摘要:
A variable resistance memory device includes a substrate and a plurality of spaced apart lower electrodes on the substrate. The device further includes a variable resistance material pattern comprising two vertically opposed wall members connected by a bottom member disposed on and electrically connected to at least one of the plurality of lower electrodes and an upper electrode on the variable resistance material pattern. An area of contact of the variable resistance material pattern with the at least one lower electrode may be rectangular, circular, ring-shaped, or arc-shaped. Fabrication methods are also described.
摘要:
Provided are a thin film forming apparatus and a thin film forming method. The thin film forming apparatus comprises a first electrode provided for etching a thin film formed on the substrate, a second electrode provided for forming a plasma in the internal space, a third electrode provided for focusing the plasma, and a control unit controlling a voltage to be applied to the first through third electrodes.
摘要:
Phase changeable memory devices are provided including a mold insulating layer on a substrate, the mold insulating layer defining an opening therein. A phase-change material layer is provided in the opening. The phase-change material includes an upper surface that is below a surface of the mold insulating layer. A first electrode is provided in the opening and on the phase-change material layer. A spacer is provided between a sidewall of the mold insulating layer and the phase-change material layer and the first electrode. The upper surface of the first electrode is coplanar with the surface of the mold insulating layer. Related methods are also provided.
摘要:
A method of fabricating a variable resistance memory device includes a plasma etching process to remove contaminants from variable resistance material that forms variable resistance elements of the device. Bottom electrodes are formed on a semiconductor substrate. Next, an interlayer dielectric layer having trenches that expose the bottom electrodes is formed on the substrate. Then a layer of variable resistance material is formed. The variable resistance material covers the interlayer dielectric layer and fills the trenches. The variable resistance material is then planarized down to at least the top surface of the interlayer dielectric layer, thereby leaving elements of the variable resistance material in the trenches. The variable resistance material in the trenches is etched to remove contaminants, produced as a result of the planarizing process, from atop the variable resistance material in the trenches. A top electrode is then formed on the variable resistance material.
摘要:
Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.
摘要:
Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.
摘要:
Provided is a method for fabricating a phase change memory device. The method includes forming a plurality of bottom electrodes on a substrate, forming a first mold layer on the substrate to extend in a first direction where the bottom electrodes are exposed, forming a second mold layer on the substrate, the second mold layer extending in a second direction orthogonal to the first direction to expose parts of the bottom electrodes, forming a phase change material layer on the first and second mold layers to be connected to parts of the bottom electrodes dividing the phase change material layer as a plurality of phase change layers respectively connected to the parts of the bottom electrodes and forming a plurality of top electrodes on the phase change layers.
摘要:
Provided is a method for fabricating a phase change memory device. The method includes forming a plurality of bottom electrodes on a substrate, forming a first mold layer on the substrate to extend in a first direction where the bottom electrodes are exposed, forming a second mold layer on the substrate, the second mold layer extending in a second direction orthogonal to the first direction to expose parts of the bottom electrodes, forming a phase change material layer on the first and second mold layers to be connected to parts of the bottom electrodes dividing the phase change material layer as a plurality of phase change layers respectively connected to the parts of the bottom electrodes and forming a plurality of top electrodes on the phase change layers.
摘要:
Provided is a phase change memory device. The phase change memory device includes a first electrode and a second electrode. A phase change material pattern is interposed between the first and second electrodes. A phase change auxiliary pattern is in contact with at least one side of the phase change material pattern. The phase change auxiliary pattern includes a compound having a chemical formula expressed as DaMb[GxTy]c(0≦a/(a+b+c)≦0.2, 0≦b/(a+b+c)≦0.1, 0.3≦x/(x+y)≦0.7), where D comprises: at least one of C, N, and O; M comprises at least one of a transition metal, Al, Ga, and In; G comprises Ge; and T comprises Te.
摘要翻译:提供了一种相变存储器件。 相变存储器件包括第一电极和第二电极。 相变材料图案插入在第一和第二电极之间。 相变辅助图案与相变材料图案的至少一侧接触。 相变辅助图案包括化学式表示为DaMb [GxTy] c(0 <= a /(a + b + c)<= 0.2,0 <= b /(a + b + c) 0.1,0.3 <= x /(x + y)≤= 0.7),其中D包括:C,N和O中的至少一个; M包括过渡金属Al,Ga和In中的至少一种; G包括Ge; T包括Te。
摘要:
Provided is a data storage device. The data storage device includes an interface, a buffer controller, a memory controller, a non-volatile memory, and a self-powered semiconductor device adjacent to and electrically connected to the buffer controller. The self-powered semiconductor device includes a semiconductor chip and a rechargeable micro-battery attached to the semiconductor chip. The rechargeable micro-battery includes a first current collector and a second current collector, which face each other, a first polarizing electrode in contact with the first current collector and facing the second current collector, a second polarizing electrode in contact with the second current collector and facing the first polarizing electrode, and an electrolyte layer formed between the first and second polarizing electrodes.