摘要:
A system and apparatus for reducing arcing and localized heating as a result of applying microwave energy to a microelectronic substrate having electronic components thereon is provided. A microwave furnace having a chamber is configured to secure a microelectronic substrate therewithin. The microelectronic substrate is electrically interconnected with a ground connected to an interior wall of the microwave furnace. A holder for securing a microelectronic substrate during the application of microwave energy and for providing the necessary electrical connections for grounding components and circuitry thereon is also provided. The holder may have a heat sink for protection against heat build-up and for maintaining a microelectronic substrate in a substantially flat orientation during microwave processing.
摘要:
Systems and methods for monitoring workpiece and workpiece material characteristics using microwave energy are disclosed. A system includes a chamber, including means for generating variable frequency microwave energy; means for positioning a workpiece within the chamber; means for subjecting the workpiece to a plurality of different microwave frequencies; and means for monitoring characteristics of the workpiece. One or more characteristics of a workpiece, or workpiece material, may be monitored by positioning the workpiece within a chamber having means for generating variable frequency microwave energy; subjecting the workpiece to microwave irradiation at a plurality of frequencies; detecting power reflection for each one of the plurality of microwave frequencies to provide power reflection data; and comparing the power reflection data to a predetermined set of power reflection data. The result of signature analysis can be coupled with a product process controller to achieve a real-time feedback control on monitoring and adjusting of process parameters.
摘要:
The bonding of components is facilitated by a conductive pattern which generates heat upon being irradiated with microwave or RF energy. The electrically conductive pattern is positioned on a first component surface and a curable resin having adhesive properties is applied thereto. A second component surface is placed in contacting relation with the resin and the conductive pattern is irradiated with microwave or RF energy to facilitate curing wherein the components are bonded together along the pattern. The conductive pattern can be utilized without adhesive resin wherein heat generated via the application of microwave or RF energy causes components to fuse together. The conductive pattern can be enveloped by polymeric material, wherein the polymeric material becomes the adhesive for bonding components when microwave or RF energy is applied.
摘要:
Rapid curing of polymer layers on semiconductor substrates is facilitated using variable frequency microwave energy. A semiconductor substrate having a polymer layer thereon is placed in a microwave furnace cavity, and then swept with a range of microwave frequencies. The range of frequencies includes a central frequency selected to rapidly heat the polymer layer. The range of frequencies is selected to generate a plurality of modes within the cavity. The sweep rate is selected so as to avoid damage to the semiconductor substrate and/or any components thereon. The microwave power may be adjusted during frequency sweeping to control the temperature of the polymer layer and the semiconductor substrate. Effluent produced during the curing of the polymer layer may be removed from the furnace cavity. The extent of cure of the polymer layer may be determined by detecting power reflection for each microwave frequency within the range to provide power reflection data, and then comparing the power reflection data with a predetermined set of power reflection data.
摘要:
Systems, methods and apparatus are disclosed for bonding a plurality of substrates via a solventless, curable adhesive. At least one of the substrates has a deformation temperature below the activation temperature of the adhesive. A workpiece is assembled from a plurality of substrates with the curable adhesive disposed therebetween. Pressure is applied to the workpiece and the workpiece is irradiated with variable frequency microwave energy. The workpiece is swept with at least one window of microwave frequencies selected to heat the adhesive without heating the substrates above their respective deformation temperatures.
摘要:
An apparatus for reducing arcing and localized heating as a result of applying microwave energy to a microelectronic substrate having electronic components thereon is provided. A microwave furnace having a chamber is configured to secure a microelectronic substrate therewithin. The microelectronic substrate is electrically interconnected with a ground connected to an interior wall of the microwave furnace. A holder for securing a microelectronic substrate during the application of microwave energy and for providing the necessary electrical connections for grounding components and circuitry thereon is also provided. The holder may have a heat sink for protection against heat build-up and for maintaining a microelectronic substrate in a substantially flat orientation during microwave processing.
摘要:
Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.
摘要:
The present invention provides a process for assembling electronics which allows for rapid heating and fast curing, and avoids subjecting the components to potentially damaging cure conditions. The process includes applying conductive or non-conductive curable thermoplastic or thermosetting resins, having adhesive properties, to a surface of the substrate or electrical component or both. One or more electrical components may be mounted on the substrate using the adhesive properties of the resin. The resin is then subjected to variable frequency microwave irradiation selected to cure the resin without adversely affecting the substrate or electrical components.
摘要:
The present invention provides a microwave curable adhesive comprising a polymer composition (e.g., a thermoplastic or thermoset polymer) and first and second microwave susceptible components. The first and second microwave susceptible components have a respective preselected size, preselected shape or preselected conductivity or combination thereof. These properties are selected to provide a multi-modal distribution of first and second microwave susceptible components and to increase microwave adsorption within said polymer composition.
摘要:
Rapid curing of polymer layers on semiconductor substrates is facilitated using variable frequency microwave energy. A semiconductor substrate having a polymer layer thereon is placed in a microwave furnace cavity, and then swept with a range of microwave frequencies. The range of frequencies includes a central frequency selected to rapidly heat the polymer layer. The range of frequencies is selected to generate a plurality of modes within the cavity. The sweep rate is selected so as to avoid damage to the semiconductor substrate and/or any components thereon. The microwave power may be adjusted during frequency sweeping to control the temperature of the polymer layer and the semiconductor substrate. Effluent produced during the curing of the polymer layer may be removed from the furnace cavity. The extent of cure of the polymer layer may be determined by detecting power reflection for each microwave frequency within the range to provide power reflection data, and then comparing the power reflection data with a predetermined set of power reflection data.