Abstract:
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.
Abstract:
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.
Abstract:
The present invention provides compounds and compositions for the amelioration of arthritis and joint injuries by inducing mesenchymal stem cells into chondrocytes.
Abstract:
This invention provides methods and compositions for incorporation of an unnatural amino acid into a peptide using an orthogonal aminoacyl tRNA synthetase/tRNA pair. In particular, an orthogonal pair is provided to incorporate 5-hydroxy-L-tryptophan in a position encoded by an opal mutation.
Abstract:
A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
Abstract:
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate alkynyl amino acids such as para-propargyloxyphenylalanine into proteins produced in a eubacteria host such as E. coli. The invention provides novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing alkynyl amino acids, and cellular translation systems.
Abstract:
A method of separating propylene oxide from a mixture (M) comprising propylene oxide and methanol, said method comprising: (i) introducing said mixture (M) into an extractive distillation column; (ii) additionally introducing an extracting solvent into said extractive distillation column; (iii) distilling propylene oxide overhead from said extractive distillation column as top stream; (iv) withdrawing a bottoms stream from said extractive distillation column; (v) compressing the top stream obtained overhead in (iii) by means of at least one compressor to give a compressed vapor.
Abstract:
The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.