Abstract:
An exhaust gas catalyst where the catalyst efficiency is improved by enhancing diffusion of the exhaust gas in a catalyst layer. An exhaust gas catalyst comprises at least a carrier and a plurality of layers formed on the carrier. At least one of the layers has pores therein, and at least one other layer has pores therein and contains, as catalyst components, a noble metal, alumina and a complex oxide mainly containing ceria, zirconia and one or more rare earth elements other than cerium.
Abstract:
An exhaust gas catalyst where the catalyst efficiency is improved by enhancing diffusion of the exhaust gas in a catalyst layer. An exhaust gas catalyst comprises at least a carrier and a plurality of layers formed on the carrier. At least one of the layers has pores therein, and at least one other layer has pores therein and contains, as catalyst components, a noble metal, alumina and a complex oxide mainly containing ceria, zirconia and one or more rare earth elements other than cerium.
Abstract:
A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
Abstract:
A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
Abstract:
Methods are provided for fabricating FinFETs that avoid thickness uniformity problems across a die or a substrate. One method includes providing a semiconductor substrate divided into a plurality of chips, each chip bounded by scribe lines. The substrate is etched to form a plurality of fins, each of the fins extending uniformly across the width of the chips. An oxide is deposited to fill between the fins and is etched to recess the top of the oxide below the top of the fins. An isolation hard mask is deposited and patterned overlying the plurality of fins and is used as an etch mask to etch trenches in the substrate defining a plurality of active areas, each of the plurality of active areas including at least a portion of at least one of the fins. The trenches are filled with an insulating material to isolate between adjacent active areas.
Abstract:
An error correction module is disclosed whereby two bit cells are used to store a bit of information in a redundant manner so that a redundant error correction module can correct a sporadic data error at one of the two bits.
Abstract:
The methods and compositions disclosed herein describes a solution containing at least one block co-polymer that is a liquid at lower temperatures and transitions to a gel at higher temperatures. The compositions are useful, for example, as an alternative to saline or silicone-gel as fillers for prostheses.
Abstract:
Disclosed are a server system for performing communication over a wireless network and a communication method thereof. The server system comprises at least one client device and a server device for performing a state monitoring operation or a control operation for the client device over the wireless network. When a data packet is sent, the server device begins to send a following packet by variably applying a transmission rate according to a network transmission state when a leading packet has been completely transmitted. Because a transmission rate can be set appropriately to the network state, the number of unnecessary retransmissions can be reduced. Therefore, transmission delay can be avoided and stable and rapid wireless communication can be achieved.
Abstract:
The present invention relates to a polymer supported reagent comprising a novel crosslinked mesoporous polymer, enabling a simple and easy production of an azoxy compound or an azo compound from an aromatic nitro compound, and a method of selectively reducing an aromatic nitro compound by using the same. The polymer supported reagent comprises a certain acrylamide mesoporous crosslinked polymer.
Abstract:
Disclosed herein are various methods of forming isolation structures on FinFETs and other semiconductor devices, and the resulting devices that have such isolation structures. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define a fin for a FinFET device, forming a layer of insulating material in the trenches, wherein the layer of insulating material covers a lower portion of the fin but not an upper portion of the fin, forming a protective material on the upper portion of the fin, and performing a heating process in an oxidizing ambient to form a thermal oxide region on the covered lower portion of the fin.