摘要:
A solar cell having n-type and p-type interdigitated back contacts (IBCs), which cover the entire back surface of the absorber layer. The spatial separation of the IBCs is in a direction perpendicular to the back surface, thus providing borderless contacts having a zero-footprint separation. As the contacts are on the back, photons incident on the cell's front surface can be absorbed without any shadowing.
摘要:
A Schottky Barrier solar cell having at least one of a low work function region and a high work function region provided on the front or back surface of a lightly-doped absorber material, which may be produced in a variety of different geometries. The method of producing the Schottky Barrier solar cells allows for short processing times and the use of low temperatures.
摘要:
A method for improving the minority lifetime of silicon containing wafer having metallic contaminants therein is described incorporating annealing at 1200° C. or greater and providing a gaseous ambient of oxygen, an inert gas and a chlorine containing gas such as HCl.
摘要:
A method for improving the minority lifetime of silicon containing wafer having metallic contaminants therein is described incorporating annealing at 1200° C. or greater and providing a gaseous ambient of oxygen, an inert gas and a chlorine containing gas such as HCl.
摘要:
A photovoltaic module (10) comprises a plurality of solar cells (20) interconnected in serial arrays (15). At least some of the solar cells (20) are equipped with control units (30) comprising at least one thermal sensor (42) and one power sensor (43). The control unit (30) comprises means (35) for removing a specific solar cell (20′) from the photovoltaic module (10) network if said solar cell (20′) is found to have reached a predefined level of degradation. In a preferred embodiment, control unit (30) is an ASIC chip (40) in thermal contact with said solar cell (20) and electrically connected to said solar cell (20).
摘要:
A solar cell and method of fabrication are disclosed. In one embodiment of the present invention, the method comprises depositing a first doped amorphous silicon layer on a first surface of a silicon substrate, depositing a second doped amorphous silicon layer on the first surface of the silicon substrate. The second doped amorphous silicon layer is doped oppositely from the first doped amorphous silicon layer. An anneal is performed to transform the first doped amorphous silicon layer and second doped amorphous silicon layer to crystalline silicon layers.
摘要:
A method of manufacturing a solar cell. The method includes the steps of providing a substrate, applying a first dopant to a first surface, applying a second dopant to a second surface, covering the doped first surface with a hard mask, applying a third dopant to the substrate side, removing the hard mask, applying a pattern of first electrical contacts to the doping pattern, and applying a pattern of second electrical contacts to the doped second surface, the pattern of second electrical contacts and the doping pattern being straight-lined opposed.
摘要:
The invention relates to a manufacturing process of a photovoltaic solar cell (100) comprising: providing high doped areas (20) on the rear side (18) of the photovoltaic solar cell (100), providing localized metal contacts (30) localized on said high doped areas (20), providing a passivation layer (50) covering a surface (52) between said contacts (30), wherein the contacts (30) remain substantially free of the passivation layer (50), and depositing a metal layer (32) for a back surface field.
摘要:
A solar cell and method of fabrication are disclosed. In one embodiment of the present invention, the method comprises depositing a first doped amorphous silicon layer on a first surface of a silicon substrate, depositing a second doped amorphous silicon layer on the first surface of the silicon substrate. The second doped amorphous silicon layer is doped oppositely from the first doped amorphous silicon layer. An anneal is performed to transform the first doped amorphous silicon layer and second doped amorphous silicon layer to crystalline silicon layers.
摘要:
Photoelectrical conversion cells may be assembled on an electrically conducting heat sink and each may be electrically isolated therefrom by employing insulating substrate material between the photoresponsive region of each cell and the heat sink.