摘要:
A radiation-emitting semiconductor component has an improved radiation efficiency. The semiconductor component has a multilayer structure with an active layer for generating radiation within the multilayer structure and also a window having a first and a second main surface. The multi-layer structure adjoins the first main surface of the window. At least one recess, such as a trench or a pit, is formed in the window from the second main surface for the purpose of increasing the radiation efficiency. The recess preferably has a trapezoidal cross section tapering toward the first main surface and can be produced for example by sawing into the window.
摘要:
A thin-film LED comprising an active layer (7) made of a nitride compound semiconductor, which emits electromagnetic radiation (19) in a main radiation direction (15). A current expansion layer (9) is disposed downstream of the active layer (7) in the main radiation direction (15) and is made of a first nitride compound semiconductor material. The radiation emitted in the main radiation direction (15) is coupled out through a main area (14), and a first contact layer (11, 12, 13) is arranged on the main area (14). The transverse conductivity of the current expansion layer (9) is increased by formation of a two-dimensional electron gas or hole gas. The two-dimensional electron gas or hole gas is advantageously formed by embedding at least one layer (10) made of a second nitride compound semiconductor material in the current expansion layer (9).
摘要:
A thin-layer LED chip (5) is claimed, comprising an epitaxial layer sequence (6) that is disposed on a carrier element (2) and contains an electromagnetic-radiation-generating active region (8), and a reflective layer (3) that is disposed on a principal surface of the epitaxial layer sequence (6) facing toward the carrier element (2) and reflects at least a portion of the electromagnetic radiation generated in the epitaxial layer sequence (6) back thereinto, in which a structured layer (1) containing a glass material is applied to a radiation extraction surface (7) of the epitaxial layer sequence (6) facing away from said carrier element (2) and has a structure that includes mutually adjacent protuberances (5) that taper in the direction away from the radiation extraction surface (7) and have a lateral grid size that is smaller than one wavelength of an electromagnetic radiation emitted from the epitaxial layer sequence (6). The structured layer (1) is advantageously applied as spin-on glass and structured by grayscale lithography.
摘要:
A radiation-emitting semiconductor component having a radiation-transmissive substrate (1), on the underside of which a radiation-generating layer (2) is arranged, in which the substrate (1) has inclined side areas (3), in which the refractive index of the substrate (1) is greater than the refractive index of the radiation-generating layer, in which the difference in refractive index results in an unilluminated substrate region (4), into which no photons are coupled directly from the radiation-generating layer, and in which the substrate (1) has essentially perpendicular side areas (5) in the unilluminated region. The component has the advantage that it can be produced with a better area yield from a wafer.
摘要:
A radiation-emitting semiconductor component having a radiation-transmissive substrate (1), on the underside of which a radiation-generating layer (2) is arranged, in which the substrate (1) has inclined side areas (3), in which the refractive index of the substrate (1) is greater than the refractive index of the radiation-generating layer, in which the difference in refractive index results in an unilluminated substrate region (4), into which no photons are coupled directly from the radiation-generating layer, and in which the substrate (1) has essentially perpendicular side areas (5) in the unilluminated region. The component has the advantage that it can be produced with a better area yield from a wafer.
摘要:
Proposed for high-performance light-emitting diodes are semiconductor chips (1) whose longitudinal sides are substantially longer than their transverse sides. Light extraction can be substantially improved in this manner.
摘要:
A method for micropatterning a radiation-emitting surface of a semiconductor layer sequence for a thin-film light-emitting diode chip. The semiconductor layer sequence is grown on a substrate. A mirror layer is formed or applied on the semiconductor layer sequence, which reflects back into the semiconductor layer sequence at least part of a radiation that is generated in the semiconductor layer sequence during the operation thereof and is directed toward the mirror layer. The semiconductor layer sequence is separated from the substrate by means of a lift-off method, in which a separation zone in the semiconductor layer sequence is at least partly decomposed in such a way that anisotropic residues of a constituent of the separation zone, in particular a metallic constituent of the separation layer, remain at the separation surface of the semiconductor layer sequence, from which the substrate is separated. The separation surface—provided with the residues—of the semiconductor layer sequence with a dry etching method, a gaseous etchant or a wet-chemical etchant, wherein the anisotropic residues are at least temporarily used as an etching mask. A semiconductor chip is produced according to such a method.
摘要:
An optical semiconductor device with a multiple quantum well structure, in which well layers and barrier layers comprising various types of semiconductor layers are alternately layered, in which device well layers (6a) of a first composition based on a nitride semiconductor material with a first electron energy and barrier layers (6b) of a second composition of a nitride semiconductor material with electron energy which is higher in comparison with the first electron energy are provided, followed, seen in the direction of growth, by a radiation-active quantum well layer (6c), for which the essentially non-radiating well layers (6a) and the barrier layers (6b) arranged in front form a superlattice.
摘要:
The invention relates to a method of making LED chips provided with a luminescence conversion material containing at least one phosphor. In the method, a layer composite is prepared that includes an LED layer sequence for a multiplicity of LED chips and comprises on a main surface at least one electrical contact surface for each LED chip, for electrically connecting said chip. A layer of adhesion promoter is applied to the main surface and selectively removed from at least portions of the contact surfaces. At least one phosphor is then applied to the main surface. Alternatively, a luminescence conversion material is applied to the main surface and selectively removed from at least portions of the contact surfaces. The invention also relates to an LED chip provided with a luminescence conversion material.
摘要:
A method for producing structures (5) on a multiplicity of optoelectronic components (1), wherein the multiplicity of optoelectronic components (1) are arranged on an auxiliary carrier (10) and the structures (5) are produced by carrying out a movement of a first roller (15) relative to the auxiliary carrier (10) and producing the structures (5) in the process by means of exerting a pressure between the first roller (15) and the auxiliary carrier (10).