摘要:
PECVD apparatus for depositing material onto a moving substrate is provided comprising a process chamber, a precursor gas inlet to the process chamber, a pumped outlet, and a plasma source disposed within the process chamber. The plasma source produces one or more negative glow regions and one or more positive columns. At least one positive column is disposed toward the substrate. The plasma source and precursor gas inlet are disposed relative to each other and the substrate such that the precursor gas is injected into the positive column adjacent the substrate. Apparatus is provided to channel the precursor gas into the positive column away from the negative glow region.
摘要:
A new and useful plasma source is provided, comprising at least one electrode connected to an alternating current power supply and disposed adjacent to a portion of a grounded substrate. The electrode has a center magnet that produces a magnetron plasma at the electrode when the electrode is biased negative by the alternating power supply, and a mirror plasma on the substrate when the electrode is biased positive by the alternating power supply.
摘要:
A point projection type flood plasma source implements a magnetron sputter cold cathode electron source in a discharge cavity separated from a process chamber by a narrow conduit and a solenoid magnetic field. The solenoid magnetic field impedes radial electron flow in the nozzle and the process chamber. Process gas flows into the discharge cavity and through the nozzle to the process chamber. This gas is ionized in the nozzle and the process chamber by electrons trapped in the solenoid magnetic field. The result is a dense plasma plume in the process chamber useful for a number of applications. The source has particular advantages for reactive gas processes such as those requiring oxygen.
摘要:
A sputter coating apparatus for sputter coating a substrate in a processing chamber includes a target of sputter coating material supported within the processing chamber. The target has a sputtering surface and a back surface. The target is affixed to a backing plate such that the back surface of the target is disposed adjacent to a first surface of the backing plate. The backing plate is in fluid communication with a source of cooling fluid. The target back surface has a first layer selected to have a high thermal emissivity coefficient. The backing plate first surface carries a second layer having a high emissivity coefficient. The target back surface first layer and the backing plate first surface second layer provide enhanced heat transfer between the target and the backing plate via thermal radiation.
摘要:
A chill drum (14) is modified to improve heat transfert between the drum and a flexible web substrate (20) disposed around the drum. The drum surface (22) contains a series of passages (44) and distribution holes (46). A working gas is injected into these passages and flows out of the distribution holes into the space between the web and drum. A cover (32) prevents working gas from escaping from frum passages in the area not covered by the web, and supplies the working gas to the passages at the drum cover. Once gas is in the passages, leakage only occurs from the edges of the web. The pressure in the passages remains essentially constant around the drum, producing uniform elevated pressures under the entire web. Elevated pressure behind the web significantly improves overall heat transfert, thereby allowing higher deposition rates and other process advantages.
摘要:
A dipole ion source (FIG. 1) includes two cathode surfaces, a substrate (1) and a pole (3); wherein a gap is defined between the substrate and the pole; an unsymmetrical mirror magnetic field including a compressed end, wherein the substrate is positioned in the less compressed end of the magnetic field; and an anode (4) creating an electric field penetrating the magnetic field and confining electrons in a continuous Hall current loop, wherein the unsymmetrical magnetic field serves an ion beam on the substrate.
摘要:
A new and useful rotatable sputter magnetron assembly is provided, that addresses the issue of uneven wear of the target electrode tube. According to the principles of the present invention, a rotatable sputter magnetron assembly for use in magnetron sputtering target material onto a substrate comprises a. a longitudinally extending tubular shaped target electrode tube having a longitudinal central axis, b. the target electrode tube extending about a magnet bar that is configured to generate a plasma confining magnetic field adjacent the target electrode tube, c. the magnet bar being held substantially stationary within the target electrode tube, and d. the target electrode tube supported for rotation about its longitudinal central axis and for axial movement along its longitudinal central axis, so that wear of the target electrode tube can be controlled by moving the target electrode tube axially during magnetron sputtering of the target material.
摘要:
A closed drift ion source which includes a channel having an open end, a closed end, and an input port for an ionizable gas. A first magnetic pole is disposed on the open end of the channel and extends therefrom in a first direction. A second magnetic pole disposed on the open end of the channel and extends therefrom in a second direction, where the first direction is opposite to the second direction. The distal ends of the first magnetic pole and the second magnetic pole define a gap comprising the opening in the first end. An anode is disposed within the channel. A primary magnetic field line is disposed between the first magnetic pole and the second magnetic pole, where that primary magnetic field line has a mirror field greater than 2.
摘要:
A closed drift ion source which includes a channel having an open end, a closed end, and an input port for an ionizable gas. A first magnetic pole is disposed on the open end of the channel and extends therefrom in a first direction. A second magnetic pole disposed on the open end of the channel and extends therefrom in a second direction, where the first direction is opposite to the second direction. The distal ends of the first magnetic pole and the second magnetic pole define a gap comprising the opening in the first end. An anode is disposed within the channel. A primary magnetic field line is disposed between the first magnetic pole and the second magnetic pole, where that primary magnetic field line has a mirror field greater than 2.
摘要:
The preferred embodiments described herein provide a magnetic mirror plasma source. While the traditional magnetic/electrostatic confinement method is ideal for many applications, some processes are not best served with this arrangement. The preferred embodiments described herein present a new technique to confine electrons (3) to produce a low pressure, dense plasma directly on a substrate surface (75). With these preferred embodiments, a combination of electrostatic and mirror magnetic confinement is implemented. The result is a novel plasma source that has unique and important advantages enabling advancements in PECVD, etching, and plasma treatment processes.