Tuneable photonic crystal lasers and a method of fabricating the same
    3.
    发明授权
    Tuneable photonic crystal lasers and a method of fabricating the same 有权
    可调光子晶体激光器及其制造方法

    公开(公告)号:US06711200B1

    公开(公告)日:2004-03-23

    申请号:US09656324

    申请日:2000-09-06

    IPC分类号: H01S303

    摘要: Room temperature lasing from optically pumped single defect in a two-dimensional photonic bandgap crystal is illustrated. The high Q optical microcavities are formed by etching an array of air holes into a half wavelength thick multiquantum well waveguide. Defects in the two-dimensional photonic crystal or used to support highly localized optical modes with volumes ranging from 2 to 3 (&lgr;/2n)3. Lithographic tuning of the air hole radius and the lattice spacing is used to match the cavity wavelength to the quantum well gain peak, as well as to increase cavity Q. The defect lasers were pumped with 10-30 nsec pulse of 0.4-1 percent duty cycle. The threshold pump power was 1500 milliwatts. The confinement of the defect mode energy to a tiny volume and the enhancement of the spontaneous emission rate make the defect cavity an interesting device for low threshold, high spontaneous emission coupling factor lasers, and high modulation rate light emitting diodes. Optic structures formed from photonic crystals also hold promise due to the flexibility of their geometries. Lithographic methods may be employed to alter the photonic crystal geometry so as to tune device characteristics. The integration of densely packed photonic crystal waveguides, prisons, and light sources integrated on a single monolithic chip is made possible. Lithographically defined photonic crystal cavities may also find use in some material systems as an alternative to epitaxially grown mirrors, such as for long wavelengths vertical cavity surface emitting lasers (VCSEL) and GaN based devices.

    摘要翻译: 示出了在二维光子带隙晶体中的光泵浦单缺陷的室温激光。 高Q光学微腔是通过将一组空气孔蚀刻成半波长厚的多量子阱波导形成的。 二维光子晶体中的缺陷或用于支持体积范围为2至3(λ/ 2n)3的高度局部化光学模式。 使用空气孔半径和晶格间距的光刻调谐来匹配腔体波长与量子阱增益峰值,以及增加空腔Q.缺陷激光器以0.4-1%的占空比的10-30 ns脉冲泵浦 周期。 阈值泵功率为1500毫瓦。 将缺陷模式能量限制到微小体积并增加自发发射速率使得缺陷腔成为低阈值,高自发发射耦合因子激光器和高调制率发光二极管的有意义的装置。 由光子晶体形成的光学结构由于其几何形状的灵活性而具有前景。 可以使用光刻方法来改变光子晶体的几何形状,以便调节器件的特性。 密集封装的光子晶体波导,监视器和集成在单个单片芯片上的光源的集成是可能的。 光刻晶体空穴也可用于某些材料系统中,作为外延生长反射镜的替代品,例如用于长波长垂直腔表面发射激光器(VCSEL)和基于GaN的器件。

    Unipolar, intraband optoelectronic transducers with micro-cavity resonators
    7.
    发明申请
    Unipolar, intraband optoelectronic transducers with micro-cavity resonators 有权
    具有微腔谐振器的单极,内部光电转换器

    公开(公告)号:US20050063438A1

    公开(公告)日:2005-03-24

    申请号:US10651466

    申请日:2003-08-30

    摘要: An optoelectronic transducer comprises a unipolar, intraband active region and a micro-cavity resonator. The resonator includes a 2D array of essentially equally spaced regions that exhibits resonant modes. Each of the spaced regions has a depth that extends through the active region and has an average refractive index that is different from that of the active region. The refractive index contrast, the spacing of the spaced regions, and the dimensions of the spaced regions are mutually adapted so that the array acts as a micro-cavity resonator and so that at least one frequency of the resonant modes of the array falls within the spectrum of an optoelectronic parameter of the active region (i.e., the gain spectrum where the transducer is a laser; the absorption spectrum where the transducer is a photodetector). In a first embodiment, the transducer is an ISB laser, whereas in a second embodiment it is a unipolar, intraband photodetector. In other embodiments, the laser is a surface-emitting ISB laser and the photodetector is a vertically-illuminated detector. In another embodiment, a nonlinear optical material is optically coupled to the micro-cavity resonator, which in one case allows an ISB laser to exhibit bistable operation.

    摘要翻译: 光电转换器包括单极性,内部有源区和微腔谐振器。 谐振器包括呈现谐振模式的基本上等间隔的区域的2D阵列。 每个间隔区域具有延伸穿过有源区域并具有不同于有源区域的平均折射率的深度。 折射率对比度,间隔区域的间隔和间隔区域的尺寸相互适应,使得阵列充当微腔谐振器,并且使得阵列的谐振模式的至少一个频率落入 有源区的光电参数的光谱(即,换能器是激光的增益光谱;换能器是光电检测器的吸收光谱)。 在第一实施例中,换能器是ISB激光器,而在第二实施例中,它是单极的,内部的光检测器。 在其他实施例中,激光是表面发射ISB激光器,并且光电检测器是垂直照明的检测器。 在另一个实施例中,非线性光学材料光耦合到微腔谐振器,在一种情况下允许ISB激光器呈现双稳态操作。