Abstract:
An exhaust gas treatment system includes in order: an intake for receiving an exhaust gas from a lean burn combustion engine; an injector for the provision of a nitrogenous reductant; a close-coupled vanadium-containing SCR catalyst composition; one or more downstream PGM-containing oxidation catalyst compositions, wherein the close-coupled vanadium-containing SCR catalyst composition includes cerium in a Ce:V molar ratio of greater than 0.3.
Abstract:
A compression ignition internal combustion engine (30) for a heavy-duty diesel vehicle comprising an exhaust system (32) comprising a composite oxidation catalyst (12, 42) and a soot filter substrate (44, 50) disposed downstream from the composite oxidation catalyst comprising: a substrate (5), preferably a honeycomb flow-through substrate monolith, having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); two catalyst washcoat zones (1, 2) arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1 and comprising a first catalyst washcoat layer (9), wherein L1 48.8 g/l (>0.8 g/in3), wherein a total platinum group metal loading in the first catalyst washcoat zone (1) defined in grams of platinum group metal per litre of substrate volume (g/l) is greater than a total platinum group metal loading in the second catalyst washcoat zone (2) and wherein the first catalyst washcoat zone (1) comprises one or more first alkaline earth metal components, preferably barium, supported on the first refractory metal oxide support material.
Abstract:
A composite, zone-coated, dual-use ammonia (AMOX) and nitric oxide oxidation catalyst (12) comprises: a substrate (5) having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); two or more catalyst washcoat zones (1; 2) comprised of a first catalyst washcoat layer (9) comprising a refractory metal oxide support material and one or more platinum group metal components supported thereon and a second catalyst washcoat layer (11) different from the first catalyst washcoat layer (9) and comprising a refractory metal oxide support material and one or more platinum group metal components supported thereon, which two or more catalyst washcoat zones (1; 2) being arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1, wherein L1 48.8 g/l (>0.8 g/in3), wherein the particulate metal oxide is an aluminosilicate zeolite including at least one of copper, iron and manganese, wherein a total platinum group metal loading in the first catalyst washcoat zone (1) defined in grams of platinum group metal per litre of substrate volume (g/l) is different from the total platinum group metal loading in the second catalyst washcoat zone (2).
Abstract:
An emissions control device for treating or removing pollutants from an exhaust gas produced by an internal combustion engine is disclosed. The emissions control device comprises a solid foam layer disposed on a substrate, wherein the solid foam layer disposed on a substrate has an open cell structure and comprises a particulate material which is a catalytic material comprising a catalytically active metal supported on a support material.
Abstract:
An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: bismuth (Bi) or an oxide thereof; an alkaline earth metal or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material comprising alumina doped with silica in a total amount of 0.5 to 15% by weight of the alumina.
Abstract:
A composite oxidation catalyst for use in an exhaust system for treating an exhaust gas produced by a vehicular compression ignition internal combustion engine is disclosed. The composite oxidation catalyst comprises a honeycomb flow-through substrate monolith and two catalyst washcoat zones arranged axially in series on and along the substrate surface.
Abstract:
An oxidation catalyst for treating an exhaust gas from a diesel engine and an exhaust system comprising the oxidation catalyst are described. The oxidation catalyst comprises: a first washcoat region for adsorbing NOx, wherein the first washcoat region comprises a zeolite catalyst, wherein the zeolite catalyst comprises a noble metal and a zeolite; a second washcoat region for oxidising nitric oxide (NO), wherein the second washcoat region comprises platinum (Pt) and a support material; and a substrate having an inlet end and an outlet end.
Abstract:
A composite oxidation catalyst (18, 20) for use in an exhaust system for treating an exhaust gas produced by a vehicular compression ignition internal combustion engine (30) and upstream of a particulate matter filter (44, 50) in the exhaust system comprises a substrate (5) having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); and three or more catalyst washcoat zones (1, 2, 3; or 1, 2, 3, 4) arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1, wherein L1
Abstract:
An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: bismuth (Bi), antimony (Sb) or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material, which is a refractory oxide: wherein the platinum group metal (PGM) is supported on the support material; and wherein the bismuth (Bi), antimony (Sb) or an oxide thereof is supported on the support material and/or the refractory oxide comprises the bismuth, antimony or an oxide thereof.
Abstract:
An oxidation catalyst for treating an exhaust gas produced by a compression ignition engine comprising: a substrate; a catalytic material disposed on the substrate, wherein the catalytic material comprises platinum (Pt); and a region comprising a capture material, wherein the region is arranged to contact the exhaust gas after the exhaust gas has contacted and/or passed through the catalytic material.