摘要:
A silicon quantum wire transistor. A silicon substrate is sub-etched leaving a thin ridge (.ltoreq.500 .ANG. tall by .ltoreq.500 .ANG. wide) of silicon a quantum wire, on the substrate surface. An FET may be formed from the quantum wire by depositing or growing gate oxide and depositing gate poly. After defining a gate, the source and drain are defined. Alternatively, an optically activated transistor is formed by defining an emitter and collector and providing a path for illumination to the wire.
摘要:
A semiconductor light emitting/detecting device has a first doped silicon layer, an intrinsic silicon epitaxial layer formed on the first doped silicon layer, at least one quantum dot embedded within the intrinsic silicon epitaxial layer, and a second doped silicon layer formed on the second intrinsic silicon epitaxial layer.
摘要:
A semiconductor light emitting/detecting device has a first doped silicon layer, an intrinsic silicon epitaxial layer formed on the first doped silicon layer, at least one quantum dot embedded within the intrinsic silicon epitaxial layer, and a second doped silicon layer formed on the second intrinsic silicon epitaxial layer.
摘要:
A method and structure for suppressing localized metal precipitate formation (LMPF) in semiconductor processing. For each metal wire that is exposed to the manufacturing environment and is electrically coupled to an N region, at least one P+ region is formed electrically coupled to the same metal wire. As a result, few excess electrons are available to combine with metal ions to form localized metal precipitate at the metal wire. A monitoring ramp terminal can be formed around and electrically disconnected from the metal wire. By applying a voltage difference to the metal wire and the monitoring ramp terminal and measuring the resulting current flowing through the metal wire and the monitoring ramp terminal, it can be determined whether localized metal precipitate is formed at the metal wire.
摘要:
A method and structure for reducing the corrosion of the copper seed layer during the fabrication process of a semiconductor structure. Before the structure (or the wafer containing the structure) exits the vacuum environment of the sputter tool, the structure is warmed up to a temperature above the water condensation temperature of the environment outside the sputter tool. As a result, water vapor would not condense on the structure when the structure exits the sputter tool, and therefore, corrosion of the seed layer by the water vapor is prevented. Alternatively, a protective layer resistant to water vapor can be formed on top of the seed layer before the structure exits the sputter tool environment. In yet another alternative embodiment, the seed layer can comprises a copper alloy (such as with aluminum) which grows a protective layer resistant to water vapor upon exposure to water vapor.
摘要:
An apparatus for processing a layer on a workpiece includes a source of reactant fluid, a reaction chamber having a support for the workpiece and a fluid delivery apparatus for feeding an input fluid into the reaction chamber with the input fluid being utilized to process the material. An infrared sensor is adapted to cooperate with the fluid delivery apparatus for sensing the concentration of a component of the input fluid. The infrared sensor includes an infrared light source positioned to direct a beam of infrared light at an infrared light detector through the input fluid. The infrared light detector produces an electrical output signal indicative of the amount of light received by the detector and therefore not absorbed by the input fluid.
摘要:
An underlying interconnect level containing underlying W vias embedded in a dielectric material layer are formed on a semiconductor substrate. A metallic layer stack comprising, from bottom to top, a low-oxygen-reactivity metal layer, a bottom transition metal layer, a bottom transition metal nitride layer, an aluminum-copper layer, an optional top transition metal layer, and a top transition metal nitride layer. The metallic layer stack is lithographically patterned to form at least one aluminum-based metal line, which constitutes a metal interconnect structure. The low-oxygen-reactivity metal layer enhances electromigration resistance of the at least one aluminum-based metal line since formation of compound between the bottom transition metal layer and the dielectric material layer is prevented by the low-oxygen-reactivity metal layer, which does not interact with the dielectric material layer.
摘要:
A method and apparatus for monitoring and controlling reactant vapors prior to chemical vapor deposition (CVD). The reactant vapors are monitored at full concentration without sampling as they are transported to a CVD reactor. Contaminants detected cause a process controller to switch the transport path to direct reactant vapors to a system pump.
摘要:
A vertical metallic stack, from bottom to top, of an elemental metal liner, a metal nitride liner, a Ti liner, an aluminum portion, and a metal nitride cap, is formed on an underlying metal interconnect structure. The vertical metallic stack is annealed at an elevated temperature to induce formation of a TiAl3 liner by reaction of the Ti liner with the material of the aluminum portion. The material of the TiAl3 liner is resistant to electromigration, thereby providing enhanced electromigration resistance to the vertical metallic stack comprising the elemental metal liner, the metal nitride liner, the TiAl3 liner, the aluminum portion, and the metal nitride cap. The effect of enhanced electromigration resistance may be more prominent in areas in which the metal nitride cap suffers from erosion during processing.
摘要:
A method and structure for reducing the corrosion of the copper seed layer during the fabrication process of a semiconductor structure. Before the structure (or the wafer containing the structure) exits the vacuum environment of the sputter tool, the structure is warmed up to a temperature above the water condensation temperature of the environment outside the sputter tool. As a result, water vapor would not condense on the structure when the structure exits the sputter tool, and therefore, corrosion of the seed layer by the water vapor is prevented. Alternatively, a protective layer resistant to water vapor can be formed on top of the seed layer before the structure exits the sputter tool environment. In yet another alternative embodiment, the seed layer can comprises a copper alloy (such as with aluminum) which grows a protective layer resistant to water vapor upon exposure to water vapor.