摘要:
An etch stop layer is formed over a surface of an interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer. A lower mold layer is deposited over the etch stop layer, and a wet etch rate of the lower mold layer is adjusted by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer. An upper mold layer is then deposited over the surface of the lower mold layer, such that a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the lower mold layer. The upper mold layer, the lower mold layer and the etch stop layer are then subjected to dry etching to form an opening therein which exposes at least a portion of the surface of the contact plug. Then a wet etching of the upper mold layer and the lower mold layer is performed so as to increase a size of the opening at the lower mold layer and so at to expose a surface portion of the etch stop layer adjacent the surface of the conductive plug. A conductive material is then deposited over the surface of the opening in the upper and lower mold layers to define a capacitor electrode.
摘要:
An etch stop layer is formed over a surface of an interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer. A lower mold layer is deposited over the etch stop layer, and a wet etch rate of the lower mold layer is adjusted by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer. An upper mold layer is then deposited over the surface of the lower mold layer, such that a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the lower mold layer. The upper mold layer, the lower mold layer and the etch stop layer are then subjected to dry etching to form an opening therein which exposes at least a portion of the surface of the contact plug. Then a wet etching of the upper mold layer and the lower mold layer is performed so as to increase a size of the opening at the lower mold layer and so at to expose a surface portion of the etch stop layer adjacent the surface of the conductive plug. A conductive material is then deposited over the surface of the opening in the upper and lower mold layers to define a capacitor electrode.
摘要:
Methods of fabricating a semiconductor device can include forming at least one layer on a first and a second side of a semiconductor substrate. Portions of the at least one layer may be removed on the first side of the semiconductor substrate to form a pattern of the at least one layer on the first side of the substrate while the at least one layer is maintained on the second side of the substrate. A capping layer can be formed on the pattern of the at least one layer on the first side of the substrate and on the at least one layer on the second side of the semiconductor substrate. The capping layer can be removed on the second side of the semiconductor substrate, thereby exposing the at least one layer on the second side of the substrate while maintaining the capping layer on the first side of the substrate. The at least one layer can be removed on the second side of the semiconductor substrate, while the capping layer and the pattern of the at least one layer is maintained on the first side of the semiconductor substrate. A portion of the capping layer can be removed on the first side of the semiconductor substrate.
摘要:
Disclosed are a method for cleaning a deposition chamber by removing attached metal oxides, and a deposition apparatus for performing in situ cleaning. A first gas and a second gas are provided into the deposition chamber. The first gas is reacted with metal included in the metal oxide to generate reacting residues. The second gas then decomposes the reacting residues, and the decomposed residues are exhausted out of the chamber. Thus, this cleaning process can be rapidly accomplished while the deposition chamber is not opened or separated from a deposition apparatus.
摘要:
Methods of fabricating a semiconductor device can include forming at least one layer on a first and a second side of a semiconductor substrate. Portions of the at least one layer may be removed on the first side of the semiconductor substrate to form a pattern of the at least one layer on the first side of the substrate while the at least one layer is maintained on the second side of the substrate. A capping layer can be formed on the pattern of the at least one layer on the first side of the substrate and on the at least one layer on the second side of the semiconductor substrate. The capping layer can be removed on the second side of the semiconductor substrate, thereby exposing the at least one layer on the second side of the substrate while maintaining the capping layer on the first side of the substrate. The at least one layer can be removed on the second side of the semiconductor substrate, while the capping layer and the pattern of the at least one layer is maintained on the first side of the semiconductor substrate. A portion of the capping layer can be removed on the first side of the semiconductor substrate.
摘要:
In a method and an apparatus for depositing a metal compound layer, a first source gas and a second source gas may be provided onto a substrate to deposit a first metal compound layer on the substrate. The first source gas may include a metal and halogen elements, and the second source gas may include a first material capable of being reacted with the metal and a second material capable of being reacted with the halogen element. The first and the second source gases may be provided at a first flow rate ratio. A second metal compound layer may be deposited on the first metal compound layer by providing the first and the second source gases with a second flow rate ratio different from the first flow rate ratio. The apparatus may include a process chamber configured to receive a substrate, a gas supply system, and a flow rate control device.
摘要:
Disclosed is a method for forming a multi-layered structure having at least two films on a semiconductor substrate. The substrate is disposed on a thermally conductible stage for supporting the substrate. After the distance between the stage and the substrate is adjusted to a first interval so that the substrate has a first temperature by heat transferred from the stage, a first thin film is formed on the substrate at the first temperature. The distance is then adjusted from the first interval to a second interval so that the substrate reaches a second temperature, and then a second thin film is formed on the first thin film at the second temperature, thereby forming the multi-layered structure on the substrate. The multi-layered structure can be employed for a gate insulation film or the dielectric film of a capacitor.
摘要:
The present invention provides methods of fabricating integrated circuit devices that include a microelectronic substrate and a conductive layer disposed on the microelectronic substrate. An insulating layer is disposed on the conductive layer and the insulating layer includes an overhanging portion that extends beyond the conductive layer. A sidewall insulating region is disposed laterally adjacent to a sidewall of the conductive layer and extends between the overhanging portion of the insulating layer and the microelectronic substrate.
摘要:
The present invention provide integrated circuit devices and methods of fabricating the same that include a microelectronic substrate and a conductive layer disposed on the microelectronic substrate. An insulating layer is disposed on the conductive layer and the insulating layer includes an overhanging portion that extends beyond the conductive layer. A sidewall insulating region is disposed laterally adjacent to a sidewall of the conductive layer and extends between the overhanging portion of the insulating layer and the microelectronic substrate.
摘要:
A layer deposition method includes: feeding a reactant with a first flow of an inert gas as a carrier gas into a reaction chamber to chemisorb the reactant on a substrate; feeding the first flow of the inert gas to purge the reaction chamber and a first reactant feed line; and feeding the second flow of the inert gas into the reaction chamber through a feed line different from the first reactant feed line.