摘要:
Disclosed are a method for cleaning a deposition chamber by removing attached metal oxides, and a deposition apparatus for performing in situ cleaning. A first gas and a second gas are provided into the deposition chamber. The first gas is reacted with metal included in the metal oxide to generate reacting residues. The second gas then decomposes the reacting residues, and the decomposed residues are exhausted out of the chamber. Thus, this cleaning process can be rapidly accomplished while the deposition chamber is not opened or separated from a deposition apparatus.
摘要:
A layer deposition method includes: feeding a reactant with a first flow of an inert gas as a carrier gas into a reaction chamber to chemisorb the reactant on a substrate; feeding the first flow of the inert gas to purge the reaction chamber and a first reactant feed line; and feeding the second flow of the inert gas into the reaction chamber through a feed line different from the first reactant feed line.
摘要:
Disclosed is a method for forming a multi-layered structure having at least two films on a semiconductor substrate. The substrate is disposed on a thermally conductible stage for supporting the substrate. After the distance between the stage and the substrate is adjusted to a first interval so that the substrate has a first temperature by heat transferred from the stage, a first thin film is formed on the substrate at the first temperature. The distance is then adjusted from the first interval to a second interval so that the substrate reaches a second temperature, and then a second thin film is formed on the first thin film at the second temperature, thereby forming the multi-layered structure on the substrate. The multi-layered structure can be employed for a gate insulation film or the dielectric film of a capacitor.
摘要:
A vertical memory device includes a substrate, a plurality of channels on the substrate and extending in a vertical direction with respect to a top surface of the substrate, a plurality of non-metal gate patterns surrounding the channels and being stacked on top of each other and spaced apart from each other along the vertical direction, and a plurality of metal gate patterns stacked on top of each other. The metal gate patterns are spaced apart from each other along the vertical direction. Each of the metal gate patterns surrounds a corresponding one of the non-metal gate patterns.
摘要:
According to example embodiments of inventive concepts, a method of fabricating a semiconductor device includes: forming a preliminary stack structure, the preliminary stack structure defining a through hole; forming a protection layer and a dielectric layer in the through hole; forming a channel pattern, a gapfill pattern, and a contact pattern in the through hole; forming an offset oxide on the preliminary stack structure; measuring thickness data of the offset oxide; and scanning the offset oxide using a reactive gas cluster ion beam. The scanning the offset oxide includes setting a scan speed based on the measured thickness data of the offset oxide, and forming a gas cluster.
摘要:
A thin layer structure includes a substrate, a blocking pattern that exposes part of an upper surface of the substrate, and a single crystalline semiconductor layer on the part of the upper surface of the substrate exposed by the pattern and in which all outer surfaces of the single crystalline semiconductor layer have a crystallographic orientation. The thin layer structure is formed by an SEG process in which the temperature is controlled to prevent migration of atoms in directions towards the central portion of the upper surface of the substrate. Thus, sidewall surfaces of the layer will not be constituted by facets.
摘要:
In methods of manufacturing a semiconductor device, a plurality of gate structures spaced apart from each other and oxide layer patterns. A sputtering process using the oxide layer patterns as a sputtering target to connect the oxide layer patterns on the adjacent gate structures to each other is performed, so that a gap is formed between the gate structures. A volume of the gap is formed uniformly to have desired volume by controlling a thickness of the oxide layer patterns.
摘要:
A semiconductor device and/or gate structure having a composite dielectric layer and methods of manufacturing the same is provided. In the semiconductor device, gate structure, and methods provided, a first conductive layer may be formed on a substrate. A native oxide layer formed on the first conductive layer may be removed. A surface of the first conductive layer may be nitrided so that the surface may be altered into a nitride layer. A composite dielectric layer including the first and/or second dielectric layers may be formed on the nitride layer. A second conductive layer may be formed on the composite dielectric layer. The first dielectric layer may include a material having a higher dielectric constant. The second dielectric layer may be capable of suppressing crystallization of the first dielectric layer.
摘要:
A method of fabricating a nonvolatile memory device includes forming a tunnel insulating layer on a semiconductor substrate, forming a charge storage layer on the tunnel insulating layer, forming a dielectric layer on the charge storage layer, the dielectric layer including a first aluminum oxide layer, a silicon oxide layer, and a second aluminum oxide layer sequentially stacked on the charge storage layer, and forming a gate electrode on the dielectric layer, the gate electrode directly contacting the second aluminum oxide layer of the dielectric layer.
摘要:
In a non-volatile memory device and a method of manufacturing the non-volatile memory device, a tunnel insulating layer, a charge trapping layer, a dielectric layer and a conductive layer may be sequentially formed on a channel region of a substrate. The conductive layer may be patterned to form a gate electrode and spacers may be formed on sidewalls of the gate electrode. A dielectric layer pattern, a charge trapping layer pattern, and a tunnel insulating layer pattern may be formed on the channel region by an anisotropic etching process using the spacers as an etch mask. Sidewalls of the charge trapping layer pattern may be removed by an isotropic etching process to reduce the width thereof. Thus, the likelihood of lateral diffusion of electrons may be reduced or prevented in the charge trapping layer pattern and high temperature stress characteristics of the non-volatile memory device may be improved.