Abstract:
An image processing device (2A) comprises: an input means for inputting a brightfield image representing cell morphology in a tissue section, and a fluorescence image representing, by fluorescent bright spots, the expression of a specific protein in the same range of the tissue section; a first generation means for generating a cell image obtained by extracting a specific site of a cell from the brightfield image; a second generation means for generating an image obtained by extracting bright spot regions from the fluorescence image, creating a brightness profile for each bright spot region, and generating a fluorescent particle image obtained by extracting the fluorescent particles in the bright spot regions on the basis of the fluorescence profile for one fluorescent particle, which serves as a fluorescence bright spot source; and a calculation means for superimposing the cell image and the fluorescent particle image on one another.
Abstract:
A tissue staining method which comprises: staining a tissue with a staining reagent wherein a biosubstance recognition site is bonded to particles carrying multiple fluorescent substances accumulated therein; in the stained tissue, counting fluorescent points or measuring fluorescent brightness; and evaluating the expression level of a biosubstance, which matches the biosubstance recognition site, in the aforesaid tissue on the basis of the number of the fluorescent points or fluorescent brightness that was measured.
Abstract:
A biological substance quantitation method includes the following. A fluorescent image is input, which represents an expression of a specific biological substance in a sample stained with a fluorescent substance by a fluorescent bright spot. A quantitative evaluation value of the fluorescent bright spot is calculated. A standard fluorescent image of a standard sample stained under a same condition as the sample and representing an expression of the biological substance in a standard sample, is input under a same condition as the fluorescent image. A quantitative evaluation value in the standard fluorescent image is calculated under a same condition as the fluorescent image. Based on a correlation between an expression amount of the biological substance in a standard sample measured in advance and the evaluation value in the standard fluorescent image, the evaluation value in the fluorescent image is converted to an expression amount of the biological substance in the sample.
Abstract:
The present invention provides a method capable of more accurately quantifying a biological material expressed on the cell membrane in pathological samples. The present invention is directed to a method for quantifying a biological material (target biological material) expressed on the cell membrane, the method including the steps of: (1a) immunostaining the target biological material with a fluorescent material; (1b) immunostaining another biological material (reference biological material) on the cell membrane with another fluorescent material; (2) using immunostaining images for the target and reference biological materials to identify the fluorescence signal corresponding to the target biological material and to measure the fluorescence signals corresponding to the target and reference biological materials; and (3) correcting the measured value of the fluorescence signal corresponding to the target biological material by a given method to quantify the expression level.
Abstract:
A biological substance detection method for detecting a biological substance specifically in a pathological specimen, includes a step of immunologically staining the pathological specimen using a fluorescent label, a step of staining the pathological specimen with a staining reagent for morphology observation purposes (eosin) to observe the morphology of the pathological specimen, a step of irradiating the stained pathological specimen with excited light to cause the emission of a fluorescent and detecting the biological substance in the pathological specimen. In the step of immunologically staining the pathological specimen, a special fluorescent particle for which the excitation wavelength appears in a region that is different from the excitation wavelength region of eosin is used as the fluorescent label.
Abstract:
An image processing device (2A) comprises: an input means for inputting a brightfield image representing cell morphology in a tissue section, and a fluorescence image representing, by fluorescent bright spots, the expression of a specific protein in the same range of the tissue section; a first generation means for generating a cell image obtained by extracting a specific site of a cell from the brightfield image; a second generation means for generating an image obtained by extracting bright spot regions from the fluorescence image, creating a brightness profile for each bright spot region, and generating a fluorescent particle image obtained by extracting the fluorescent particles in the bright spot regions on the basis of the fluorescence profile for one fluorescent particle, which serves as a fluorescence bright spot source; and a calculation means for superimposing the cell image and the fluorescent particle image on one another.
Abstract:
The present invention provides a biological substance detection method for specifically detecting a biological substance from a pathological specimen, by which method, when immunostaining using a fluorescent label and staining for morphological observation using a staining agent for morphological observation are simultaneously performed, the results of fluorescence observation and immunostaining can be assessed properly even if the fluorescent label and/or the staining agent is/are deteriorated by irradiation with an excitation light. The biological substance detection method according to the present invention is characterized in that the brightness retention rate of an immunostained part is in a range of 80% to 120% in relation to the brightness retention rate of a part stained for morphological observation when the fluorescent label used for the immunostaining is observed.
Abstract:
A tissue staining method which comprises: staining a tissue with a staining reagent wherein a biosubstance recognition site is bonded to particles carrying multiple fluorescent substances accumulated therein; in the stained tissue, counting fluorescent points or measuring fluorescent brightness; and evaluating the expression level of a biosubstance, which matches the biosubstance recognition site, in the aforesaid tissue on the basis of the number of the fluorescent points or fluorescent brightness that was measured.
Abstract:
There is provided a biological substance quantitation method of quantitating a biological substance in a sample stained with a staining reagent including a fluorescent particle encapsulating a fluorescent substance, based on a fluorescence of the fluorescent substance. The method includes inputting a fluorescent image representing expression of the biological substance in the sample by a fluorescent bright spot; and quantitating an expression amount of the biological substance based on a fluorescence of the fluorescent bright spot. The biological substance is a nucleoprotein expressed at a cell nucleus. The fluorescent particle binds to the biological substance through a primary antibody which is directed against the biological substance as an antigen.
Abstract:
An image processing device includes an input unit and an alignment unit. The input unit inputs a cell shape image and a fluorescence image. The cell shape image shows a shape of a cell in a tissue section. The fluorescence image shows expression of a specific protein as a fluorescent bright point in a region same as a region in the tissue section. The alignment unit aligns the cell shape image and the fluorescence image based on an information source detected in both the cell shape image and the fluorescence image.