摘要:
A method of producing an optoelectronic semiconductor component includes providing a carrier having a top side, an underside situated opposite the top side, and a plurality of connection areas arranged at the top side alongside one another in a lateral direction; applying a plurality of optoelectronic components arranged at a distance from one another in a lateral direction at the top side, the components having a contact area facing away from the carrier; applying protective elements to the contact and connection areas; applying an electrically insulating layer to exposed locations of the carrier, contact areas and protective elements; producing openings in the insulating layer by removing protective elements; and arranging an electrically conductive material on the insulating layer and in the openings, wherein the electrically conductive material connects a contact area to an assigned connection area.
摘要:
A method of producing an optoelectronic semiconductor component includes providing a carrier having a top side, an underside situated opposite the top side, and a plurality of connection areas arranged at the top side alongside one another in a lateral direction; applying a plurality of optoelectronic components arranged at a distance from one another in a lateral direction at the top side, the components having a contact area facing away from the carrier; applying protective elements to the contact and connection areas; applying an electrically insulating layer to exposed locations of the carrier, contact areas and protective elements; producing openings in the insulating layer by removing protective elements; and arranging an electrically conductive material on the insulating layer and in the openings, wherein the electrically conductive material connects a contact area to an assigned connection area.
摘要:
An optoelectronic component includes a carrier element. At least two elements are arranged in an adjacent fashion on a first side of the carrier element. Each element has at least one optically active region for generating the electromagnetic radiation. The optoelectronic component has an electrically insulating protective layer arranged at least in part on a surface of the at least two adjacent elements which lies opposite the first side. The protective layer, at least in a first region arranged between the at least two adjacent elements, at least predominantly prevents a transmission of the electromagnetic radiation generated by the optically active regions.
摘要:
An optoelectronic component includes a carrier element. At least two elements are arranged in an adjacent fashion on a first side of the carrier element. Each element has at least one optically active region for generating the electromagnetic radiation. The optoelectronic component has an electrically insulating protective layer arranged at least in part on a surface of the at least two adjacent elements which lies opposite the first side. The protective layer, at least in a first region arranged between the at least two adjacent elements, at least predominantly prevents a transmission of the electromagnetic radiation generated by the optically active regions.
摘要:
In one embodiment of the present invention, a method is disclosed for contacting at least one electric contact surface on a surface of a substrate and/or a surface of a semiconductor chip arranged on a substrate. According to one embodiment of the invention, a film of electrically insulating plastic material is laminated onto the surfaces. A large-area contacting of the contact surfaces, which are freely accessible via the openings in the film, with a layer of electrically conductive material is then carried out. It is the aim of a planar electric contacting method to produce openings in an insulation during a short period of processing time. In particular, openings are to be positioned at a precise position to the contact surfaces. To achieve this, openings are produced in the film of electrically insulating plastic material in the region of the contact surface to be contacted by means of laser cutting and prior to laminating. This method is suitable for all planar contacting processes. Substrates or semiconductor chips which are contacted accordingly may be produced. The semiconductor chips used can be, in particular, power semiconductor chips.
摘要:
A method for selectively producing film laminates for packaging and for insulating unpackaged electronic components and functional patterns and corresponding device. The method coat surface regions of functional patterns arranged on a substrate and/or of surface regions of semiconductor chips arranged on the substrate. An insulation is to be effectively adapted in its properties to different requirements of functional patterns and/or electronic components. Film regions are laminated on surface regions in such a way that the properties of the plastics material of the film regions are adapted to the function of the film. This adaptation is individual and selective. Various films are used. The method is suitable in particular for coating or packaging electronic components or active and passive devices.
摘要:
A semiconductor chip device including a surface on which at least one electrical contact surface is provided. A foil from an electrically insulating material is applied, especially by vacuum, to the surface and rests closely to the surface and adheres to the surface. The foil, in the area of the contact surface, is provided with a window in which the contact surface is devoid of the foil and is contacted across a large area to at least one layer from an electroconductive material. In at least one embodiment, the layer from the electroconductive material is part of a flexible contact for electrically connecting the contact surface to at least one external connecting conductor.
摘要:
A semiconductor chip device including a surface on which at least one electrical contact surface is provided. A foil from an electrically insulating material is applied, especially by vacuum, to the surface and rests closely to the surface and adheres to the surface. The foil, in the area of the contact surface, is provided with a window in which the contact surface is devoid of the foil and is contacted across a large area to at least one layer from an electroconductive material. In at least one embodiment, the layer from the electroconductive material is part of a flexible contact for electrically connecting the contact surface to at least one external connecting conductor.
摘要:
In one embodiment of the present invention, a method is disclosed for contacting at least one electric contact surface on a surface of a substrate and/or a surface of a semiconductor chip arranged on a substrate. According to one embodiment of the invention, a film of electrically insulating plastic material is laminated onto the surfaces. A large-area contacting of the contact surfaces, which are freely accessible via the openings in the film, with a layer of electrically conductive material is then carried out. It is the aim of a planar electric contacting method to produce openings in an insulation during a short period of processing time. In particular, openings are to be positioned at a precise position to the contact surfaces. To achieve this, openings are produced in the film of electrically insulating plastic material in the region of the contact surface to be contacted by means of laser cutting and prior to laminating. This method is suitable for all planar contacting processes. Substrates or semiconductor chips which are contacted accordingly may be produced. The semiconductor chips used can be, in particular, power semiconductor chips.
摘要:
A semiconductor chip device including a surface on which at least one electrical contact surface is provided. A foil from an electrically insulating material is applied, especially by vacuum, to the surface and rests closely to the surface and adheres to the surface. The foil, in the area of the contact surface, is provided with a window in which the contact surface is devoid of the foil and is contacted across a large area to at least one layer from an electroconductive material. In at least one embodiment, the layer from the electroconductive material is part of a flexible contact for electrically connecting the contact surface to at least one external connecting conductor.