摘要:
An improved low-temperature absorber, amorphous carbonitride (ACN) with an extinction coefficient (k) of greater than 0.15, and an emissivity of greater than 0.8 is disclosed. The ACN film can also be characterized as having a minimum of hydrocarbon content as observed by FTIR. The ACN film can be used as an effective absorbing layer that absorbs a wide range of electromagnetic radiation from different sources including lasers or flash lamps. A method of forming such an ACN film at a deposition temperature of less than, or equal to, 450° C. is also provided.
摘要:
Techniques for semiconductor processing are provided. In one aspect, a method for patterning one or more features in a semiconductor device comprises the following step. At least one critical dimension of the one or more features is reduced during etching of the antireflective material. A lithographic structure is also provided.
摘要:
Disclosed are multilayered resist structures including bilayer and top surface imaging which utilize tuned underlayers functioning as ARCs, planarizing layers, and etch resistant hard masks whose properties such as optical, chemical and physical properties are tailored to give a multilayer resist structure exhibiting high resolution, residue free lithography and methods of preparing these materials. These underlayer films include the group consisting of novolac based resists whose processing conditions are controlled, polyarylsulfones such as the BARL material, polyhydroxystyrene based derivatives, an example being a copolymer of polyhydroxystyrene and polyhydroxystyrene reacted with anthracenemethanol that contains a cross-linker, and acid catalyst (thermal acid generator), polyimides, polyethers in particular polyarylene ethers, polyarylenesulfides, polycarbonates such as polyarylenecarbonates, epoxies, epoxyacrylates, polyarylenes such as polyphenylenes, polyarylenevinylenes such as polyphenylenevinylenes, polyvinylcarbazole, cyclicolefins, and polyesters. Such films have index of refraction and extinction coefficient tunable from about 1.4 to about 2.1 and from about 0.1 to about 0.6 at UV and DUV wavelengths, in particular 365, 248, 193 and 157 nm and EUV. Moreover, underlayer films produced in the present invention do not interact with the resist limiting interfacial mixing and contamination of resist by an outgassing product. The bilayer and TSI resist structures can be used for 248, 193, 157, EUV, x-ray, e-beam, and ion beam technology.
摘要:
A multifunctional polymer comprising a polymeric chain having chromophore groups and cross-linking sites is suitable as a resist material and especially as the underlayer for bilayer and top surface imaging strategies. The multifunctional polymer can function as an antireflective coating, planarizing layer or etch resistant hard mask.
摘要:
A new group of non-chemically amplified negative tone water/aqueous base developable (photo) resists based on redistribution of carbon-oxygen bonds in pendant ester groups of the polymers has been found.
摘要:
A lithographic structure comprising: an organic antireflective material disposed on a substrate, and a silicon antireflective material disposed on the organic antireflective material. The silicon antireflective material comprises a crosslinked polymer with a SiOx backbone, a chromophore, and a transparent organic group that is substantially transparent to 193 nm or 157 nm radiation. In combination, the organic antireflective material and the silicon antireflective material provide an antireflective material suitable for deep ultraviolet lithography. The invention is also directed to a process of making the lithographic structure.
摘要:
A method of controlling the nucleation rate (i.e., incubation time) of dissimilar materials in an epitaxial growth chamber that can favor high growth rates and can be compatible with low temperature growth is provided. The nucleation rate of dissimilar materials is controlled in an epitaxial growth chamber by altering the nucleation rate for the growth of a given material film, relative to single crystal growth of the same material film, by choosing an appropriate masking material with a given native nucleation characteristic, or by modifying the surface of the masking layer to achieve the appropriate nucleation characteristic. Alternatively, nucleation rate control can be achieved by modifying the surface of selected areas of a semiconductor substrate relative to other areas in which an epitaxial semiconductor material will be subsequently formed.
摘要:
A lithographic structure comprising: an organic antireflective material disposed on a substrate; and a silicon antireflective material disposed on the organic antireflective material. The silicon antireflective material comprises a crosslinked polymer with a SiOx backbone, a chromophore, and a transparent organic group that is substantially transparent to 193 nm or 157 nm radiation. In combination, the organic antireflective material and the silicon antireflective material provide an antireflective material suitable for deep ultraviolet lithography. The invention is also directed to a process of making the lithographic structure.
摘要:
A method of selectively growing one or more carbon nano-tubes includes forming an insulating layer on a substrate, the insulating layer having a top surface; forming a via in the insulating layer; forming an active metal layer over the insulating layer, including sidewall and bottom surfaces of the via; and removing the active metal layer at portions of the top surface with an ion beam to enable the selective growth of one or more carbon nano-tubes inside the via.
摘要:
A method that allows for uniform, simultaneous epitaxial growth of a semiconductor material on dissimilarly doped semiconductor surfaces (n-type and p-type) that does not impart substrate thinning via a novel surface preparation scheme, as well as a structure that results from the implementation of this scheme into the process integration flow for integrated circuitry are provided. The method of the present invention can by used for the selective or nonselective epitaxial growth of semiconductor material from the dissimilar surfaces. More specifically, the invention comprises a method for counterdoping of n-FET and/or p-FET regions of silicon circuitry during the halo and/or extension implantation process utilizing a technique by which the surface characteristics of the two regions are made similar with respect to their response to wet or dry surface preparation and which renders the two previously dissimilar surfaces amenable to simultaneous epitaxial growth of raised source/drain structures; but not otherwise affecting the electrical performance of the resulting device.