摘要:
A method for differential offset spacer formation suitable for incorporation into manufacturing processes for advanced CMOS-technologies devices is presented. The method comprises forming a first insulative layer overlying a plurality of gate structures, then forming a second insulative layer overlying the first insulative layer. A mask is formed to expose a first portion of the second insulative layer overlying a gate structure of a first transistor type, and to protect a second portion of the second insulative layer overlying a gate structure of a transistor of a second transistor type. The exposed first portion of the second insulative layer overlying the gate structure of the first type is then etched. After etching, the mask is removed, and the exposed second portion of the second insulative layer and the first insulative layer are etched to form differential spacers abutting the gate structures. Endpoint is utilized to halt the spacer etch process.
摘要:
Methods are presented for fabrication of alignment features of a desired depth, and shallow trench isolation (STI) features in Silicon-On-Insulator (SOI) material. Specific embodiments require no more than two lithography and etch processes, which represents an improvement over current methodology requiring three lithography and etch processes in order to produce the desired features during manufacture of a semiconductor device.
摘要:
The method performs a first photolithography and etch to form shallow trench isolation features and alignment mark features into the top SOI layer. The shallow trenches are then filled with a dielectric material to form the isolation. A second lithography and etch step is then applied to etch the window locations for back-side contacts, and to transfer the alignment marks down into the SOI lower substrate. After this first lithography and etch step, the alignment marks in the top silicon may be used for alignment of the second lithography mask and etch. This is made possible by leaving the polish stop layer on the wafer, which serves to increase the optically effective thickness of the alignment mark pattern. The polish stop layer is removed after the second etch process. The teachings can be applied to any Semiconductor-On-Insulator-type wafer/technology where the top semiconductor layer is not thicker than the optimum alignment mark depth.
摘要:
Various methods of fabricating substrate trenches and isolation structures therein are disclosed. In one aspect, a method of fabricating a trench in a substrate is provided. An oxide/nitride stack is formed on the substrate. An opening with opposing sidewalls is plasma etched in the silicon nitride film until a first portion of the oxide film is exposed while second and third portions of the oxide film positioned on opposite sides of the first portion remain covered by first and second portions of the silicon nitride film that project inwardly from the opposing sidewalls. The oxide film is etched for a selected time period in order to expose a portion of the substrate and to define first and second oxide/nitride ledges that project inwardly from the opposing sidewalls. The substrate is etched to form the trench with the first and second oxide/nitride ledges protecting underlying portions of the substrate.
摘要:
The subject invention provides systems and methods that monitor and/or control turbulence of an immersion medium. The systems and methods relate to computer controlled techniques that reduce effects of immersion medium flow due to a liquid temperature gradient. According to an aspect of the subject invention, a number of temperature measurements of the immersion medium are obtained, and the temperature measurements are utilized to generate a gradient map of the immersion medium. By way of illustration, the temperature measurements can be made via wireless temperature sensors. The gradient map can be utilized to understand the stability of the immersion medium. According to an aspect of the subject invention, instability identified with the gradient map can be mitigated.
摘要:
The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
摘要:
Various apparatus and methods of monitoring endcap pullback are disclosed. In one aspect, an apparatus is provided that includes a substrate that has a plurality of semiconductor regions. Each of the plurality of semiconductor regions has a border with an insulating structure. A transistor is positioned in each of the plurality of semiconductor regions. Each of the transistors includes a gate that has a first lateral dimension and an end that has a position relative to its border. A voltage source is electrically coupled to the transistors whereby levels of currents flowing through the transistors are indicative of the positions of the ends of the gates relative to their borders.
摘要:
The present invention relates generally to photolithographic systems and methods, and more particularly to systems and methodologies that facilitate compensating for imprint mask critical dimension error(s). An aspect of the invention generates feedback information that facilitates control of imprint mask critical dimension via employing a scatterometry system to detect imprint mask critical dimension error, and mitigating the error via a spacer etchback procedure.
摘要:
The present invention relates generally to photolithographic systems and methods, and more particularly to systems and methodologies that modify an imprint mask. An aspect of the invention generates feedback information that facilitates control of imprint mask feature height via employing a scatterometry system to detect topography variation and, decreasing imprint mask feature height in order to compensate for topography variation.
摘要:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and a gate. The insulating layer is formed on the substrate and the gate is formed on the insulating layer. The fin has a number of side surfaces, a top surface and a bottom surface. The bottom surface and at least a portion of the side surfaces of the fin are surrounded by the gate. The gate material surrounding the fin has a U-shaped cross-section at a channel region of the semiconductor device.