摘要:
Provided is a group-III nitride semiconductor light-emitting device which has a high level of crystallinity and superior internal quantum efficiency and which is capable of enabling acquisition of high level light emission output, and a manufacturing method thereof, and a lamp. An AlN seed layer composed of a group-III nitride based compound is laminated on a substrate 11, and on this AlN seed layer, there are sequentially laminated each layer of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer respectively composed of a group-III nitride semiconductor, wherein the full width at half-maximum of the X-ray rocking curve of the (0002) plane of the p-type semiconductor layer 16 is 60 arcsec or less, and the full width at half-maximum of the X-ray rocking curve of the (10-10) plane is 250 arcsec or less.
摘要:
An object of the present invention is to obtain a group III nitride compound semiconductor stacked structure where a group III nitride compound semiconductor layer having good crystallinity is stably stacked on a dissimilar substrate.The group III nitride compound semiconductor stacked structure of the present invention is a group III nitride compound semiconductor stacked structure comprising a substrate having provided thereon a first layer comprising a group III nitride compound semiconductor and a second layer being in contact with the first layer and comprising a group III nitride compound semiconductor, wherein the first layer contains a columnar crystal with a definite crystal interface and the columnar crystal density is from 1×103 to 1×105 crystals/μm2.
摘要翻译:本发明的目的是获得具有良好结晶度的III族氮化物化合物半导体层稳定地层叠在不同的基板上的III族氮化物化合物半导体层叠结构。 本发明的III族氮化物化合物半导体堆叠结构是III族氮化物化合物半导体层叠结构,其包括在其上设置有包含III族氮化物化合物半导体的第一层和与第一层接触的第二层的衬底, III族氮化物化合物半导体,其中第一层包含具有确定的晶体界面的柱状晶体,并且柱状晶体密度为1×10 3〜1×10 5个晶体/ m 2。
摘要:
An object of the present invention is to obtain a group III nitride compound semiconductor stacked structure where a group III nitride compound semiconductor layer having good crystallinity is stably stacked on a dissimilar substrate.The group III nitride compound semiconductor stacked structure of the present invention is a group III nitride compound semiconductor stacked structure comprising a substrate having provided thereon a first layer comprising a group III nitride compound semiconductor and a second layer being in contact with the first layer and comprising a group III nitride compound semiconductor, wherein the first layer contains a columnar crystal with a definite crystal interface and the columnar crystal density is from 1×103 to 1×105 crystals/μm2.
摘要:
Provided is a group-III nitride semiconductor light-emitting device which has a high level of crystallinity and superior internal quantum efficiency and which is capable of enabling acquisition of high level light emission output, and a manufacturing method thereof, and a lamp. An AlN seed layer composed of a group-III nitride based compound is laminated on a substrate 11, and on this AlN seed layer, there are sequentially laminated each layer of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer respectively composed of a group-III nitride semiconductor, wherein the full width at half-maximum of the X-ray rocking curve of the (0002) plane of the p-type semiconductor layer 16 is 60 arcsec or less, and the full width at half-maximum of the X-ray rocking curve of the (10-10) plane is 250 arcsec or less.
摘要:
The present invention provides a method for manufacturing a group III nitride semiconductor light emitting element, with which warping can be suppressed upon the formation of respective layers on the substrate, a semiconductor layer including a light emitting layer of excellent crystallinity can be formed, and excellent light emission characteristics can be obtained; such a group III nitride semiconductor light emitting element; and a lamp. Specifically disclosed is a method for manufacturing a group III nitride semiconductor light emitting element, in which an intermediate layer, an underlayer, an n-type contact layer, an n-type cladding layer, a light emitting layer, a p-type cladding layer, and a p-type contact layer are laminated in sequence on a principal plane of a substrate, wherein a substrate having a diameter of 4 inches (100 mm) or larger, with having an amount of warping H within a range from 0.1 to 30 μm and at least a part of the edge of the substrate warping toward the principal plane at room temperature, is prepared as the substrate; the X-ray rocking curve full width at half maximum (FWHM) of the (0002) plane is 100 arcsec or less and the X-ray rocking curve FWHM of the (10-10) plane is 300 arcsec or less, in a state where the intermediate layer has been formed on the substrate and where thereafter the underlayer and the n-type contact layer are formed on the intermediate layer; and furthermore the n-type cladding layer, the light emitting layer, the p-type cladding layer, and the p-type contact layer are formed on the n-type contact layer.
摘要:
A group III nitride semiconductor light emitting device including an LED structure formed on top of a single crystal, base layer (103) formed on top of a substrate (101) including a principal plane (10) having a flat surface (11) configured from a (0001) C plane, and a plurality of convex portions (12) including a surface (12c) non-parallel to the C plane having a width (d1) of 0.05 to 1.5 μm and height (H) of 0.05 to 1 μm, the base layer is formed by causing a group III nitride semiconductor to grow epitaxially so as to cover the flat surface and convex portions, and the width (d1) of the convex portions and top portion thickness (H2) of the base layer at the positions of the top portions (12e) of the convex portions satisfy: H2=kd1 (wherein 0.5
摘要:
A wind power generation system includes an excessive current consumption device, an AC input of which is connected between a generator rotor and an excitation converter on a system failure to detect a DC voltage ascent of the excitation converter and operate a shunt circuit on the system failure.
摘要:
A group III nitride semiconductor light emitting device including an LED structure formed on top of a single crystal, base layer (103) formed on top of a substrate (101) including a principal plane (10) having a flat surface (11) configured from a (0001) C plane, and a plurality of convex portions (12) including a surface (12c) non-parallel to the C plane having a width (d1) of 0.05 to 1.5 μm and height (H) of 0.05 to 1 μm, the base layer is formed by causing a group III nitride semiconductor to grow epitaxially so as to cover the flat surface and convex portions, and the width (d1) of the convex portions and top portion thickness (H2) of the base layer at the positions of the top portions (12e) of the convex portions satisfy: H2=kd1 (wherein 0.5
摘要:
An object of the present invention is to provide a low-resistance n-type Group III nitride semiconductor layered structure having excellent flatness and few pits.The inventive n-type group III nitride semiconductor layered structure comprises a substrate and, stacked on the substrate, an n-type impurity concentration periodic variation layer comprising an n-type impurity atom higher concentration layer and an n-type impurity atom lower concentration layer, said lower concentration layer being stacked on said higher concentration layer.
摘要:
The present invention is a method for producing a group III nitride semiconductor layer in which a single crystal group III nitride semiconductor layer (103) is formed on a substrate (101), the method including: a substrate processing step of forming, on the (0001) C-plane of the substrate (101), a plurality of convex parts (12) of surfaces (12c) not parallel to the C-plane, to thereby form, on the substrate, an upper surface (10) that is composed of the convex parts (12) and a flat surface (11) of the C-plane; and an epitaxial step of epitaxially growing the group III nitride semiconductor layer (103) on the upper surface (10), to thereby embed the convex parts (12) in the group III nitride semiconductor layer (103).