摘要:
A variety of techniques may be employed, separately or in combination, to improve the gap-filling performance of a dielectric material formed by chemical vapor deposition (CVD). In one approach, a first dielectric layer is deposited using sub-atmospheric chemical vapor deposition (SACVD), followed by a second dielectric layer deposited by high density plasma chemical vapor deposition (HDP-CVD) or plasma-enhanced chemical vapor deposition (PECVD). In another approach, a SACVD dielectric layer is deposited in the presence of reactive ionic species flowed from a remote plasma chamber into the processing chamber, which performs etching during the deposition process. In still another approach, high aspect trenches may be filled utilizing SACVD in combination with oxide layers deposited at high temperatures.
摘要:
A method of filling a gap on a substrate includes providing flows of silicon-containing processing gas oxidizing processing gas, and phosphorous-containing processing gas to a chamber housing the substrate and depositing a first portion of a P-doped silicon oxide film as a substantially conformal layer in the gap by causing a reaction among the processing gases and varying over time a ratio of the gases. The temperature of the substrate is maintained below about 500° C. throughout deposition of the conformal layer. The method also includes depositing a second portion of the P-doped silicon oxide film as a bulk layer by maintaining the ratio of the gases substantially constant throughout deposition of the bulk layer. The temperature of the substrate is maintained below about 500° C. throughout deposition of the bulk layer.
摘要:
A method (100) of cleaning residues from a chemical vapor deposition apparatus (10) is provided. The present method (100) includes introducing into a chamber (12) cleaning gases such as N.sub.2, C.sub.2 F.sub.6, and O.sub.2, and forming a plasma from the cleaning gases. The present method also includes removing residues from interior surfaces of the chamber 12 by forming a volatile product from the residues and at least one of the cleaning gases.
摘要翻译:提供了从化学气相沉积装置(10)清洗残留物的方法(100)。 本方法(100)包括将清洁气体如N 2,C 2 F 6和O 2的腔室(12)引入并从清洗气体形成等离子体。 本方法还包括通过从残余物和至少一种清洁气体形成挥发性产物来从室12的内表面去除残留物。
摘要:
A method and apparatus for controlling the wet-etch rate and thickness uniformity of a dielectric layer, such as a phosphosilicate glass layer (PSG) layer. The method is based upon the discovery that the atmospheric pressure at which a PSG layer is deposited affects the wet-etch rate of the same, during a subsequent processing step, as well as the layer's thickness uniformity. As a result, the method of the present invention includes the step of pressurizing the atmospheric pressure of a semiconductor process chamber within a predetermined range after the substrate is deposited therein. Flowed into the deposition zone is a process gas comprising a silicon source, all oxygen source, and a phosphorous source; and maintaining the deposition zone at process conditions suitable for depositing a phosphosilicate glass layer on the substrate.