摘要:
A method to form shallow trench isolations with reduced substrate defects by using a nitrogen anneal is achieved. A silicon substrate is provided. The silicon substrate is etched where not protected by a photoresist mask to form shallow trenches where shallow trench isolations are planned. A liner oxide layer is grown on the interior surfaces of the shallow trenches. The silicon substrate and the liner oxide layer are annealed to reduce or eliminate defects, dislocations, interface traps, and stress in the silicon substrate. An isolation oxide layer is deposited overlying the liner oxide layer and completely filling the shallow trenches. The isolation oxide layer is etched down to the top surface of the silicon substrate and thereby forms the shallow trench isolations. The integrated circuit device is completed.
摘要:
System and method for providing a light shield for a CMOS imager is provided. The light shield comprises a structure formed above a point between a photo-sensitive element and adjacent circuitry. The structure is formed of a light-blocking material, such as a metal, metal alloy, metal compound, or the like, formed in dielectric layers over the photo-sensitive elements.
摘要:
A CMOS image sensor having increased capacitance that allows a photo-diode to generate a larger current is provided. The increased capacitance reduces noise and the dark signal. The image sensor utilizes a transistor having nitride spacers formed on a buffer oxide layer. Additional capacitance may be provided by various capacitor structures, such as a stacked capacitor, a planar capacitor, a trench capacitor, a MOS capacitor, a MIM/PIP capacitor, or the like. Embodiments of the present invention may be utilized in a 4-transistor pixel or a 3-transistor pixel configuration.
摘要:
The present disclosure provides a method of making an integrated circuit (IC). The method includes forming an electric device on a front side of a substrate; forming a top metal pad on the front side of the substrate, the top metal pad being coupled to the electric device; forming a passivation layer on the front side of the substrate, the top metal pad being embedded in the passivation layer; forming an opening in the passivation layer, exposing the top metal pad; forming a deep trench in the substrate; filling a conductive material in the deep trench and the opening, resulting in a though-wafer via (TWV) feature in the deep trench and a pad-TWV feature in the opening, where the top metal pad being connected to the TWV feature through the pad-TWV feature; and applying a polishing process to remove excessive conductive material, forming a substantially planar surface.
摘要:
The present disclosure provides a backside illuminated semiconductor device. The device includes a substrate having a front surface and a back surface; a plurality of sensor elements formed in the substrate, each of the plurality of sensor elements is designed and configured to receive light directed towards the back surface; and a sensor isolation feature formed in the substrate, and disposed horizontally between two adjacent elements of the plurality of sensor elements, and vertically between the back surface and the front surface.
摘要:
Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.
摘要:
The present invention is CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS type photodiode with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
摘要:
An SRAM device has STI regions separated by mesas and doped regions including source/drain regions, active areas, wordline conductors and contacts in a semiconductor substrate is made with a source region has 90° transitions in critical locations. Form a dielectric layer above the active areas. Form the wordline conductors above the active areas transverse to the active areas. The source and drain regions of a pass gate transistor are on the opposite sides of a wordline conductor. Form the sidewalls along the crystal plane. Form the contacts extending down through to the dielectric layer to the mesas. Substrate stress is reduced because the large active area region formed in the substrate assures that the contacts are formed on the surfaces of the mesas are in contact with the mesas formed on the substrate and that the surfaces of the silicon of the mesas are shielded from the contacts.
摘要:
A process for fabricating a lateral photodiode element, for an image sensor cell, with an increased depletion region, has been developed. The process features protecting a portion of the semiconductor substrate from ion implantation procedures used to create the P well, and the N well components of the lateral photodiode element. The protected region, or the space between the P well and N well regions, allows a larger depletion region to be realized, when compared to lateral photodiode elements in which the N well and P well regions butt. The space between the P well and N well regions, between about 0.2 to 0.4 um, result in the desired P well—intrinsic or P type semiconductor substrate—N well, (P-I-N), lateral photodiode element.
摘要:
A new method of forming an improved buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the semiconductor substrate to fill the gaps. The hard mask layer is removed. The polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted to form the buried contact. A refractory metal layer is deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines and planarized to form polycide gate electrodes and interconnection lines. The dielectric material layer is removed. An oxide layer is deposited and anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.