Abstract:
A fuel injection system for an internal combustion engine and a method of controlling fuel injection according to which a predetermined fuel quantity is delivered from a high-pressure pump to the internal combustion engine, first and second return flow quantity are returned through first and second relief ducts, the second relief duct including a control throttle having a constant cross-section, and an electronic control unit controls flow delivery in accordance with characteristic values including those of the internal combustion engine, the pump, and a quantity measuring device for measuring the second return flow, and in accordance with the predetermined fuel delivery quantity also used as a characteristic value.
Abstract:
A fuel injection apparatus for internal combustion engines, in which the onset and end of injection are determined by a hydraulically actuated control slide. The injection pump of the apparatus, which is preferably combined with an injection nozzle to form a pump/nozzle unit, has a pump piston embodied as a differential piston, whose section having the larger diameter serves as an auxiliary pump piston and generates a control pressure (p.sub.S) actuating the control slide. During its compression stroke the control slide, in order to initiate the onset of injection, closes an overflow line leading out of the pump work chamber; and during its return stroke, which is effected by the pressure drop in the control line, the control slide relieves the overflow line in order to control the end of injection. The control pressure (p.sub.S) in the control line necessary for actuating the stroke movement of the control slide is controlled by the closure of this line by means of a control device and is built up during the compression stroke of the auxiliary pump piston.
Abstract:
An internal combustion engine has a cylinder with a movable piston and a cylinder head, a main combustion chamber and an additional combustion chamber, elements producing a twisted stream rotating about an axis of the additional combustion chamber, an injecting nozzle opening in an aspirating passage, and an external igniting device, wherein the injecting nozzle is formed as a single-hole injecting nozzle and has an injection hole which is directed substantially against the igniting device.
Abstract:
A method is proposed for regulating the combustion of operating mixtures in the combustion chambers of internal combustion engines. The course of the light intensity of the light resulting from combustion in the combustion chamber is detected and evaluated over the course of combustion; reference control variables derived therefrom are formed for use by subsequently disposed closed-loop control devices of the engine.
Abstract:
The nozzle body of a fuel injection nozzle comprises upper and lower portions which are secured together by welding. This connection is achieved by using the extremity of pin means on the valve needle as a centering element. The surfaces which cooperate with the valve needle at most only need to be equalized.
Abstract:
A fuel injection system employing continuous injection into the induction manifold for varying the fuel-air ratio during the warm-up phase of the engine. A pivoting flap responds to the air flow through the induction tube and rotates a metering valve core. Openings in this valve core cooperate with openings in the valve cylinder to form a metering valve aperture of variable cross-section. The pressure differential across this aperture influences the metered fuel quantity and this pressure differential can be varied during the warm-up phase of the engine. The variation in the pressure differential is accomplished by heating a bi-metallic spring which disengages from the closure element of a diaphragm valve, increasing the closing bias thereof. The resulting increase in fuel pressure downstream of the metering aperture displaces a piston which removes the additional biasing force on another diaphragm valve, permitting the reduction of fuel pressure upstream of the metering aperture with the net effect of a reduction of the pressure differential across the metering aperture and a corresponding reduction of the metered fuel quantity, i.e., a leaning out of the fuel-air mixture.
Abstract:
To prevent slip-out or slide-out of a vehicle operating in a curve, the lateral stability or, respectively, instability of the vehicle is determined and, if instability or incipient instability is sensed, the vehicle is automatically braked, and/or engine torque of the vehicle engine is reduced. A reference parameter K, which may be variable in accordance with vehicle operating and operation conditions, is compared with a quotient of change of lateral forces applied to the front (V) and hind or rear (H) axles with respect to the change of the slip angle (.delta..sub.V, .delta..sub.H), and if the change of lateral force (.DELTA..sub.S /.DELTA..sub..delta.) at the respective axles, and passes the reference K. The respective axles can then be together or selectively braked in accordance with the extent of deviation from said comparison reference K and/or engine torque also reduced.
Abstract:
An apparatus for controlling the spring firmness of a road vehicle is proposed, which is combined with a control of the shock absorber firmness. Both controls are preformed using a single control valve. Trigger signals for the control valve are ascertained by an electronic device, which receives its signals from sensors, disposed on the vehicle, for spring travel, acceleration, vehicle speed and steering angle or the like, and in particular for a travel sensor which picks up the shock absorber compression and emits it as a signal to the electronic device, whereby changes in spring stiffness are achieved.
Abstract:
A fuel injection valve assembly for supplying a preliminary injection of fuel of a constant amount regardless of engine speed before the main injection of fuel begins comprising a spring biased, fuel supply pressure responsive, preliminary injection piston for the preliminary injection, a fuel supply pressure responsive loading piston for controlling the main injection fuel flow and a needle valve, both of the latter being biased oppositely by a common spring. Separate supply ducts for the preliminary and main fuel injections and the arrangement of the valve surfaces on the loading piston and needle valve enable the loading piston to be held closed and the needle valve to be opened by the pressure imposed on the preliminary injection piston and remain open long enough for the preliminary injection piston to travel its full stroke before closing and before the needle valve is opened for the main injection.
Abstract:
In an internal combustion engine employing manifold fuel injection, the air flow rate through the induction manifold controls the motions of a slide in a metering and distribution valve assembly. The slide, in turn, controls the effective metering valve apertures of several individual openings, each leading first to an equal pressure diaphragm valve and, hence, to individual fuel injection nozzles.The system includes a differential pressure control valve, which maintains a constant pressure difference across the metering valve apertures in the metering and distribution valve assembly. The differential pressure control valve may be in parallel or series connection with the several equal pressure diaphragm valves. The system also includes a pressure control valve, responsive to engine parameters, which adjusts the resetting force acting on the control slide in the metering and distribution valve assembly.