摘要:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A tuning voltage applied to the composite reflector induces refractive index changes, thereby allowing the center wavelength to be altered. A dither signal applied the composite reflector broadens the spectrum of the laser output, thereby reducing SBS in fiber optic systems
摘要:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A tuning voltage applied to the composite reflector induces refractive index changes, thereby allowing the center wavelength to be altered. A dither signal applied the composite reflector broadens the spectrum of the laser output, thereby reducing SBS in fiber optic systems.
摘要:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A tuning voltage applied to the composite reflector induces refractive index changes, thereby allowing the center wavelength to be altered. A dither signal applied the composite reflector broadens the spectrum of the laser output, thereby reducing SBS in fiber optic systems
摘要:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A voltage applied to the composite reflector induces a quantum confined stark effect, thereby allowing the wavelength to be altered. In one embodiment, the current drive to the active region and the shape of the first waveguide (e.g., a raised-sine function) are mutually adapted so that N longitudinal modes have essentially the same threshold gain and so that the DFB region spanned by the first waveguide is segmented into N zones, each zone providing optical feedback at a different wavelength corresponding to a different longitudinal mode.
摘要:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A tuning voltage applied to the composite reflector induces a quantum confined stark effect, thereby allowing the center wavelength to be altered. A pre-chirp signal applied the composite reflector reduces signal distortion in fiber optic systems.
摘要:
In a WDM fiber-optic network, a unique laser transmitter enables signals to be routed at three hierarchical levels: at one level discrimination among signal paths is based on N WDM wavelength channels, at another level discrimination is based on m AM subcarrier frequency channels, and at a third level discrimination is based on n FM subcarrier frequency channels. Thus, a total of Nmn distinguishable optical channels can be accommodated and a like number of users served. The laser transmitter comprises a broadband, tunable semiconductor laser which includes an intracavity, integrated composite reflector to which a tuning voltage and a FM dither signal are applied, an intracavity gain section to which drive current is applied, and an extracavity, integrated electroabsorption modulator to which an information (e.g., data, voice, video) signal and an AM dither signal are applied. The tuning voltage provides coarse wavelength tuning among N WDM channels, whereas the FM dither signal produces an additional m channels via FM-SCM. The AM dither likewise produces an additional n channels via AM-SCM.
摘要:
In accordance with the invention a multiwavelength optical fiber cross connect is provided with an active all-fiber optical router for multiplexing/demultiplexing. The router is comprised of one electronic component--a phase controller--and four fiber components: 1) a fiber directional coupler, 2) a fiber reflective grating filter, 3) a fiber tap, and 4) a fiber phase modulator. The application describes how to make optical routers from these components ranging in complexity from a single wavelength drop router to an N-port, N-wavelength router for add/drop multiplexing. The application also describes how optical wavelength routers can be combined to create optical fiber Cross connect (OXCs), ranging in complexity from 2.times.2 single wavelength OXCs to NXN, M-wavelength OXCs.
摘要:
Disclosed is a graded index separate confinement heterostructure quantum well (GRIN-SCH QW) laser with continuously graded, substantially index matched InGaAsP confinement layer. The inventive device is well adapted for high power output in the wavelength region 1.2-1.68 .mu.m. In particular, it can readily be designed to have an output wavelength that makes it suitable as pump source for Er-doped optical fiber amplifiers. A method of manufacturing a laser according to the invention is also disclosed.
摘要:
A multi-quantum well optical waveguide structure comprises a plurality of active regions including quantum wells with different gain peak wavelengths to provide an ultra broadband optical gain spectrum. Two adjacent sets of active regions having a large band gap difference are connected by a tunneling injection layer to provide smooth electron transport. Single transverse-mode operation is obtained by narrowly tapering the width of the multi-quantum well optical waveguide from the center to the two ends. Higher-order modes are suppressed at the output of the tapered waveguide, even though the center waveguide portion supports higher-order modes. In this way, the multi- quantum well optical waveguide can be utilized for ultra broadband optical amplification using a single mode fiber.
摘要:
A multi-quantum well optical waveguide structure comprises a plurality of active regions including quantum wells with different gain peak wavelengths to provide an ultra broadband optical gain spectrum. Two adjacent sets of active regions having a large band gap difference are connected by a tunneling injection layer to provide smooth electron transport. Single transverse-mode operation is obtained by narrowly tapering the width of the multi-quantum well optical waveguide from the center to the two ends. Higher-order modes are suppressed at the output of the tapered waveguide, even though the center waveguide portion supports higher-order modes. In this way, the multi-quantum well optical waveguide can be utilized for ultra broadband optical amplification using a single mode fiber.