Abstract:
The disclosure provides a heat sink for electrical elements and a light-emitting device containing thereof. The heat sink includes a radiating substrate and at least one hollow radiating channel. In which, the hollow radiating channel is horizontally embedded in the radiating substrate, and has two openings disposed on the same site or the opposite sites of the radiating substrate, so that gas may flow in the hollow radiating channel and remove heat of the radiating substrate. And a light-emitting device containing the heat sink is also provided.
Abstract:
The invention provides a light-emitting diode device and a method for fabricating the same. The light-emitting diode device includes a metal substrate. A light-emitting diode structure is bonded on the metal substrate. The light-emitting diode structure includes a first type semiconductor substrate and a second type semiconductor layer. The first type semiconductor layer has a first surface and a second surface opposite to the first surface. The second type semiconductor layer is in contact with the metal substrate. A light-emitting layer is disposed between the first type semiconductor substrate and the second type semiconductor layer. A portion of the second surface and a sidewall adjacent to the second surface are uneven roughened surfaces.
Abstract:
A frameless panel light includes a light source module and a lamp cover having a front portion and side portions surrounding the front portion. The front and side portions define an accommodating space. The light source module is disposed in the accommodating space and includes a light source and a light guide plate. The light guide plate includes a light-transmissive substrate including first and second major surfaces and a side surface connecting the first and second major surfaces and a microstructure formed on the first major surface and including a recess and an annular groove around the recess. The annular groove has a depth greater than that of the recess. A bottom of the recess is at higher elevation than the first major surface from the second major surface. The annular groove has a protruding portion protruding from a bottom of the annular groove.
Abstract:
A light emitting diode structure includes a patterned substrate, an N-type semiconductor layer, a light emitting layer, and a P-type semiconductor layer. Plural protruding portions are formed on a surface of the substrate. A horizontal projection of each of the protruding portions on the surface of the substrate has a projection width W1. An interval width W2 is formed between every two adjacent protruding portions. A vertical height h is formed between a peak of each of the protruding portions and the horizontal surface of the surface of the substrate. The value of {[(W1)/2+W2]/h} is substantially equal to tan 46°. The N-type semiconductor layer is located on the substrate and covers the protruding portions. The light emitting layer is located on the N-type semiconductor layer. The P-type semiconductor layer is located on the light emitting layer.
Abstract:
A pixel package is provided. The pixel package includes a flexible redistribution layer and a plurality of LED chips arranged on the surface of the flexible redistribution layer in a flip-chip manner. The pixel package also includes a plurality of light-adjusting layers respectively disposed on the LED chips. The pixel package further includes a plurality of flexible composite laminates disposed on the surface of the flexible redistribution layer and between the LED chips.
Abstract:
A LED carrier includes a substrate, a conductive layer, an adhesive layer, and a reflector. The conductive layer is disposed on the substrate, and has a bonding portion and an extending portion. The bonding portion has a top surface higher than a top surface of the extending portion. The adhesive layer covers the extending portion of the conductive layer and exposes the bonding portion of the conductive layer. The reflector is disposed over the adhesive layer. The adhesive layer has a hook portion in contact with a corner of the reflector.
Abstract:
A light guide plate includes a light-transmissive substrate and at least one microstructure. The light-transmissive substrate includes first and second major surfaces and a side surface connecting the first and second major surfaces. The microstructure is formed on the first major surface. The microstructure comprises a recess and an annular groove around the recess. The annular groove has a depth greater than a depth of the recess. A bottom of the recess is at higher elevation than the first major surface from the second major surface.