Abstract:
Spark ignition engine operation at higher RPM so as to reduce alcohol requirements in high efficiency alcohol enhanced gasoline engines is disclosed. Control of engine upspeeding (use of a higher ratio of engine RPM to wheel RPM) so as to achieve an alcohol reduction objective while limiting any decrease in efficiency is described. High RPM alcohol enhanced gasoline engine operation in plug-in series hybrid powertrains for heavy duty trucks and other vehicles is also described.
Abstract:
A biomass conversion system is disclosed. The system comprises a syngas generator, a cleanup engine and a power producing engine. The power producing engine is coupled to a load, such as an electrical generator. Modifications to the cleanup engine to enhance performance are described. Additionally, methods of controlling the cleanup engine in response to changes in load are disclosed. In certain embodiments, the air-to-fuel ratio, and/or recirculation gases are varied. In other embodiments, a chemical synthesis reactor may be coupled to the output of the cleanup engine.
Abstract:
An integrated biomass conversion system and a method of starting and shutting down the system are disclosed. The integrated biomass conversion system comprises a syngas generator, such as a gasifier, a cleanup engine and a syngas utilization system, which could be a power producing engine or a chemical reactor for chemical or fuel synthesis. The cleanup engine operates rich and at high temperatures so that the tars exhausted by the syngas generators are destroyed and not allowed to foul other components. An orderly sequence to start and shut down the integrated biomass conversion system is disclosed.
Abstract:
Internal combustion engines tolerant to tar-containing producer gas are disclosed. Two concepts are described. The engines are tolerant to producer gas from a biomass gasifier with minimal pretreatment. When biomass is gasified to be burned for power generation or to be used to synthesize chemicals such as biofuels, a large fraction of the installation cost is spent on equipment to clean up the heavy organic components (also referred to as ‘tars’) from the gas stream, hereafter referred to as ‘producer gas’. The invention described herein may be used to enable power generation from gasified biomass with minimal treatment. It may also be used to treat biomass at a very low cost for other uses such as synthesizing chemicals. The producer gas is not necessarily limited to biomass derived. Producer gas derived from coal or other sources has similar issues and the invention described herein would be equally applicable.
Abstract:
Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
Abstract:
The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
Abstract:
Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
Abstract:
Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
Abstract:
Engine system using alcohol Rankine heat recovery where the engine heat converts alcohol into hydrogen-rich gas which is then introduced into the engine cylinders. The engine system includes a source of liquid alcohol along with an internal combustion engine generating a high-temperature exhaust. Structure is provided for introducing a first portion of the liquid alcohol into the engine and a series of heat exchangers forming a Rankine heat recovery cycle is provided to extract heat from the exhaust and transferring the heat to a second portion of the liquid alcohol, causing it to change phase to a gaseous alcohol. A heat exchanger/catalyst is heated by the exhaust to reform the gaseous alcohol into a hydrogen-rich reformate. Valve structure rapidly introduces the reformate into the engine for combustion and a control system is provided for controlling the ratio of the first and second portions of the liquid alcohol to maximize the amount of the second portion of the liquid alcohol while using a minimum amount of the first portion needed to prevent knock. The heat recovery system uses metallic foams on fins heat exchangers.
Abstract:
Optimized alcohol and plasma enhanced prechambers for engines powered by gasoline and other fuels are used to increase the range of prechamber operation and to reduce soot. The increased prechamber capability is employed to extend the limit of lean operation of the engines. It can also be used to extend the limit of heavy EGR operation and to enable higher RPM operation. The amount of alcohol used in the prechamber is preferably less than 2% of the fuel that is used in the engine cylinder. The alcohol for the prechamber can be entirely provided by onboard separation from a gasoline-alcohol fuel mixture.