摘要:
An apparatus for producing metal oxide nanofibers includes a jetting unit, a mixing unit, a heating unit, and a cooling unit. The jetting unit jets particles made of a metal. The mixing unit prepares a mixture by mixing the metal particles and a gas containing an oxidizing component that includes oxygen in molecules of the component. The heating unit heats the mixture to raise the temperature of the mixture up to a temperature at which the metal evaporates. The cooling unit cools the product thus-produced in the heating unit.
摘要:
A flow channel structure includes a substrate having a flow channel formed therein, and plural fibrous bristles extending from the inner wall of the flow channel. The flow channel is configured to allow a solution to flow through the flow channel. The inner wall of the flow channel is made of silicon. The flow channel is configured to allow a solution to flow through the flow channel. This flow channel structure can homogenize the solution inside the flow channel.
摘要:
A leakage current on a side surface of a sensor chip of a cell electrophysiological sensor is reduced. In order to do so, a sensor chip having a continuity hole and a chip holding part covering the side surface of the sensor chip are provided. The sensor chip includes silicon as a main component, and the chip holding part is made of glass. The chip holding part is adhesively bonded to the side surface of the sensor chip by glass welding. Thus, in the cell electrophysiological sensor device of the present invention, the airtightness between the side surface of the sensor chip and the chip holding part is improved, so that a leakage current can be reduced.
摘要:
A process including holding sensor chip; holding glass tube surrounding the outer periphery of the side surface of sensor chip; applying a wind pressure to the side surface of glass tube from the outside of glass tube and melting glass tube to be glass-welded to the side surface of sensor chip. Thereby, the outer periphery of sensor chip can be surrounded by a highly hydrophilic glass tube. Thus, a cell electrophysiological sensor with high measurement accuracy can be produced.
摘要:
A sensor includes a diaphragm having a through-hole (1), and includes a frame supporting a diaphragm and having a cavity. Kerfs are formed in a frame so as to extend from an end surface of the frame, and the wall surfaces of the kerfs are made hydrophilic. This structure can suppress the occurrence of bubbles in the vicinity of the through-hole, and efficiently remove the remaining bubbles. As a result, the bubbles adhering to the vicinity of the through-hole can be removed, and the measuring reliability of the sensor can be improved.
摘要:
A component separating device includes a flow channel, an acoustic wave generator for generating an acoustic wave in the flow channel, a first inlet channel for introducing a fist solution containing solid particles into the flow channel, a second inlet channel for introducing a second solution, and outlet channels for discharging a solution from the flow channel. A density grade generator is provided at the first inlet channel for forming a density grade of the solid particles. This component separating device extracts the solid particles into a high-purity solution at a high collecting rate.
摘要:
A vibrator has a large strength of a standing wave even with a low driving voltage, thereby improving the accuracy of component separation. A device according to the present invention includes a substrate having a channel groove provided in an upper surface of the substrate, a seal provided above the substrate so as to cover an upper opening of the channel groove, a projection provided on an outer side wall opposite to the channel groove, and a vibrator causing the projection to warp and vibrate in a depth direction of the channel groove. The warping vibration of the projection is amplified due to effect of leverage, and generates a large stress on the outer wall of the channel groove having the projection provided thereon. Consequently, the strength of a standing wave in the channel groove increases even for a low driving voltage, thereby improving the accuracy of component separation.
摘要:
A process including holding sensor chip; holding glass tube surrounding the outer periphery of the side surface of sensor chip; applying a wind pressure to the side surface of glass tube from the outside of glass tube and melting glass tube to be glass-welded to the side surface of sensor chip. Thereby, the outer periphery of sensor chip can be surrounded by a highly hydrophilic glass tube. Thus, a cell electrophysiological sensor with high measurement accuracy can be produced.
摘要:
A component separating device includes a flow channel, an acoustic wave generator for generating an acoustic wave in the flow channel, a first inlet channel for introducing a fist solution containing solid particles into the flow channel, a second inlet channel for introducing a second solution, and outlet channels for discharging a solution from the flow channel. A density grade generator is provided at the first inlet channel for forming a density grade of the solid particles. This component separating device extracts the solid particles into a high-purity solution at a high collecting rate.
摘要:
A silicon structure of the present invention is provided with a silicon substrate (1) to become a base, and a plurality of fibrous projections (2) made of silicon dioxide and directly joined to a silicon-made surface (1a) of the silicon substrate (1). By arbitrarily constructing an area where these fibrous projections (2) are formed in a predetermined area, it is possible to render the area to have at least either hydrophilicity or water retentivity, so as to provide a silicon structure useful for a variety of devices.