摘要:
The present invention relates to a LED module (10) comprising a substrate (12), at least one LED chip (20) mounted on a first side of said substrate, and an optical element (21) covering the LED chip(s) (20). The substrate (12) is further provided with at least one via channel (22) extending from the first side of the substrate to a second opposite side of the substrate, whereby the via channel(s) is provided with conducting means for electrically connecting the at least one LED chip (20) to a control circuit (32). By providing the substrate with via channels with conducting means, the control circuit may be connected at the second side (the bottom side) or at the edge of the substrate. Thus, no top mounted electrical interface is required from the substrate, which is advantageous with respect to miniaturization, light emission, etcetera.
摘要:
A light emitting module (19), comprising at least one semi-conductor light source (20a-c) capable of emitting light, and a light-modifying member (21) arranged adjacent to the at least one semiconductor light source (20a-c) in a direction of emission of the light. The light-modifying member (21) is formed by a stacked sheet element (21) separated from an integral stacked sheet structure comprising first and second stacked sheets, so that the stacked sheet element (21) includes first and second sheet portions of the first and second stacked sheets, and at least the first sheet portion is configured to modify the emitted light. By providing the light-modifying member as a stacked sheet element which has been separated from an integral stacked sheet structure, batch manufacturing of the light-modifying member and/or the light emitting module is enabled, such that manufacturing steps requiring manual labor, or use of expensive equipment may be performed to produce the integral stacked sheet structure. The costs for these manufacturing steps may then be distributed over a large number of components, thereby reducing manufacturing costs.
摘要:
The present invention relates to a method for producing a substrate with at least one covered via that electrically and preferably also thermally connects a first substrate side with an opposite second substrate side. The processing involves forming a trench on a the first substrate side remains and covering the trench with a permanent layer on top of a temporary, sacrificial cap-layer, which is decomposed in a thermal process step. The method of the invention provides alternative ways to remove decomposition products of the sacrificial cap-layer material without remaining traces or contamination even in the presence of the permanent layer. This is, according to a first aspect of the invention, achieved by providing the substrate trench with an overcoat layer that has holes. The holes in the overcoat layer leave room for the removal of the decomposition products of the cap-layer material. According to the second aspect of the invention, opening the covered trench from the second substrate side and allowing the cap-layer material to be removed through that opening provides a solution. Both methods of the present invention are based on the common idea of using a temporary cap-layer even in a situation where the substrate opening is permanently covered before the removal of the temporary cap-layer.
摘要:
A semiconductor device and a method for manufacturing such semiconductor device for use in a stacked configuration of the semiconductor device are disclosed. The semiconductor device includes a substrate including at least part of an electronic circuit provided at a first side thereof. The substrate includes a passivation layer and a substrate via that extends from the first side to a via depth such that it is reconfigurable into a through-substrate. The semiconductor device further includes a patterned masking layer on the first side of the substrate. The patterned masking layer includes a trench extending fully through the patterned masking layer. The trench has been filled with a redistribution conductor. The substrate via and the redistribution conductor include metal paste and together form one piece, such that there is no physical interface between the through-substrate via and the redistribution conductor. Thus, the parasitic resistance of this electrical connection is reduced.
摘要:
The invention relates to a semiconductor device for use in a stacked configuration of the semiconductor device and a further semiconductor device. The semiconductor device comprises: a substrate (5) comprising at least part of an electronic circuit (7) provided at a first side thereof. The substrate (5) comprises a passivation layer (19) at the first side and a substrate via that extends from the first side to a via depth beyond a depth of the electronic circuit (7) such that it is reconfigurable into a through-substrate via (10) by backside thinning of the substrate (5). The semiconductor device further comprises: a patterned masking layer (15) on the first side of the substrate (5). The patterned masking layer (15) comprises at least a trench (16) extending fully through the patterned masking layer (15). The trench has been filled with a redistribution conductor (20). The substrate via and the redistribution conductor (20) comprise metal paste (MP) and together form one piece. The effect of the features of the semi-conductor device of the invention is that there is no physical interface between those the through-substrate via (10) and the redistribution conductor (20). As a consequence of the invention the parasitic resistance of this electrical connection is reduced, which results in a better electrical performance of the semiconductor device. The invention further relates to a method of manufacturing such semiconductor device. And the invention relates to a semiconductor assembly comprising a stacked configuration of a plurality of such semiconductor devices.
摘要:
A method of manufacturing a back-side (14) illuminated image sensor (1) is disclosed, comprising the steps of: starting with a wafer (2) having a first (3) and a second surface (4), providing light sensitive pixel regions (5) extending into the wafer (2) from the first surface (3), securing the wafer (2) onto a protective substrate (7) such that the first surface (3) faces the protective substrate, the wafer comprising a substrate of a first material (8) with an optical transparent layer (9) and a layer of semiconductor material (10), wherein the substrate (8) is selectively removed from the layer of semiconductor material by using the optical transparent layer (9) as stopping layer. For back-side illuminated image sensors, light has to transmit through the semiconductor layer and enter into the light sensitive pixel regions (5). In order to reduce absorption losses, it is very advantageous that the semiconductor layer (10) can be made relatively thin with a good uniformity. Because of the reduced thickness of the semiconductor layer, more light can enter into the light sensitive regions, resulting in an improved efficiency of the image sensor.
摘要:
The present invention relates to a method for producing a substrate with at least one covered via that electrically and preferably also thermally connects a first substrate side with an opposite second substrate side. The processing involves forming a trench on a the first substrate side remains and covering the trench with a permanent layer on top of a temporary, sacrificial cap-layer, which is decomposed in a thermal process step. The method of the invention provides alternative ways to remove decomposition products of the sacrificial cap-layer material without remaining traces or contamination even in the presence of the permanent layer This is, according to a first aspect of the invention, achieved by providing the substrate trench with an overcoat layer that has holes. The holes in the overcoat layer leave room for the removal of the decomposition products of the cap-layer material. According to the second aspect of the invention, opening the covered trench from the second substrate side and allowing the cap-layer material to be removed through that opening provides a solution. Both methods of the present invention are based on the common idea of using a temporary cap-layer even in a situation where the substrate opening is permanently covered before the removal of the temporary cap-layer
摘要:
The invention relates to a micro electromechanical device (1′) for tilting a body (2) in two degrees of freedom comprising a carrier element (3) and a membrane (4), the body (2) being connected via the membrane (4) to the carrier element (3), wherein the body (2) and the carrier element (3) each comprise at least one electrode (5,6). The body (2) is tilted by means of electrostatic forces (7) between the at least one electrode (5) of the body (2) and the at least one electrode (6) of the carrier element (3) by an application of a voltage (V1,V2) to said electrodes (5,6) from a voltage source.
摘要翻译:本发明涉及一种用于在包括载体元件(3)和膜(4)的两个自由度上倾斜主体(2)的微机电装置(1'),所述主体(2)通过膜(4)连接 )到所述载体元件(3),其中所述主体(2)和所述载体元件(3)各自包括至少一个电极(5,6)。 主体(2)通过施加主体(2)的至少一个电极(5)与载体元件(3)的至少一个电极(6)之间的静电力(7)倾斜, 从电压源到所述电极(5,6)的电压(V SUB 1,V 2)。