摘要:
Polyester fibers having an individual fiber thickness of 0.1 to 10 dtex are produced from a polyester polymer produced by polycondensing an aromatic dicarboxylate ester in the presence of a catalyst including a mixture of a Ti compound component (A) including at least one member selected from titanium alkoxides and reaction products of the titanium alkoxides with a specific type of carboxylic acids or anhydrides thereof, with a specific P compound component (B), and/or a reaction product of a Ti compound component (C) with a specific P compound component (D). The resultant fibers have a good color tone (a low b value) a stable drawing and false-twisting processability and exhibit excellent appearance and performance.
摘要:
Polyester fibers having an individual fiber thickness of 0.1 to 10 dtex are produced from a polyester polymer produced by polycondensing an aromatic dicarboxylate ester in the presence of a catalyst including a mixture of a Ti compound component (A) including at least one member selected from titanium alkoxides and reaction products of the titanium alkoxides with a specific type of carboxylic acids or anhydrides thereof, with a specific P compound component (B), and/or a reaction product of a Ti compound component (C) with a specific P compound component (D). The resultant fibers have a good color tone (a low b value) a stable drawing and false-twisting processability and exhibit excellent appearance and performance.
摘要:
There are provided a process for producing a polyester fine multifilament yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 to 400 and a birefringence of 0.03 to 0.06 comprising passing polymer streams of a polyester polymer melt extruded from a spinneret surface through an atmosphere wherein a distance of 0 to 40 mm from the spinneret surface is regulated to a temperature within the range of 100 to 300° C., further cooling the polymer streams and then converging the cooled filaments into a filament bundle at a position of 350 to 500 mm from the spinneret surface; a process for producing a polyester fine false twist textured yarn comprising subjecting a polyester fine multifilament yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 to 400 and a bifringence of 0.03 to 0.06 to false twist texturing, the process comprising subjecting the multifilament yarn to air interlacing so as to provide a degree of interlacing of 50 to 90 interlaced spots/m measured for the false twist textured yarn, regulating the residence time in a draw-false twisting heater of 0.052 to 0.300 second and the temperature of the running filament yarn at the outlet of the heater to a higher temperature than the glass transition temperature (Tg) of the polyester polymer by 90 to 140° C., subjecting the multifilament yarn to simultaneous draw-false twist texturing at a draw ratio of 1.40 to 1.70 times, providing the false twist textured yarn, applying a finish oil in an amount of 1.3 to 3.0% by weight based on the weight of the false twist textured yarn and winding the resulting yarn under a winding tension of 0.05 to 0.30 cN/dtex at a speed of 500 to 1200 m/min; and a process for producing the polyester fine false twist textured yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 and 400 and a birefringence of 0.03 to 0.06 comprising subjecting a polyester multifilament yarn to the simultaneous draw-false twisting and producing the false twist textured yarn, the process comprising the polyester fine multifilament yarn to air interlacing treatment before and after the simultaneous draw-false twist texturing and regulating the degree of interlacing before and after the latter air interlacing treatment to 30 to 60 interlaced spots/m and 70 to 110 interlaced spots/m, respectively.
摘要:
There are provided a process for producing a polyester fine multifilament yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 to 400 and a birefringence of 0.03 to 0.06 comprising passing polymer streams of a polyester polymer melt extruded from a spinneret surface through an atmosphere wherein a distance of 0 to 40 mm from the spinneret surface is regulated to a temperature within the range of 100 to 300° C., further cooling the polymer streams and then converging the cooled filaments into a filament bundle at a position of 350 to 500 mm from the spinneret surface; a process for producing a polyester fine false twist textured yarn comprising subjecting a polyester fine multifilament yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 to 400 and a bifringence of 0.03 to 0.06 to false twist texturing, the process comprising subjecting the multifilament yarn to air interlacing so as to provide a degree of interlacing of 50 to 90 interlaced spots/m measured for the false twist textured yarn, regulating the residence time in a draw-false twisting heater of 0.052 to 0.300 second and the temperature of the running filament yarn at the outlet of the heater to a higher temperature than the glass transition temperature (Tg) of the polyester polymer by 90 to 140° C., subjecting the multifilament yarn to simultaneous draw-false twist texturing at a draw ratio of 1.40 to 1.70 times, providing the false twist textured yarn, applying a finish oil in an amount of 1.3 to 3.0% by weight based on the weight of the false twist textured yarn and winding the resulting yarn under a winding tension of 0.05 to 0.30 cN/dtex at a speed of 500 to 1200 m/min; and a process for producing the polyester fine false twist textured yarn having a single filament fineness of 0.9 dtex or below, a total number of single filaments of 100 and 400 and a birefringence of 0.03 to 0.06 comprising subjecting a polyester multifilament yarn to the simultaneous draw-false twisting and producing the false twist textured yarn, the process comprising the polyester fine multifilament yarn to air interlacing treatment before and after the simultaneous draw-false twist texturing and regulating the degree of interlacing before and after the latter air interlacing treatment to 30 to 60 interlaced spots/m and 70 to 110 interlaced spots/m, respectively.
摘要:
A light-emitting device according to an embodiment of the present invention includes a light-emitting element, and a package substrate on which this light-emitting element is placed. This package substrate includes a placement face on which the light-emitting element is placed, a back face that is opposed to the placement face, and a mounting face that is opposed, between the placement face and the back face, to a mounting substrate when the light-emitting device is mounted, and includes a first recess portion that extends, on the mounting face, from the back face toward the placement face and that has a first heat conduction member formed on the surface thereof, and an intermediate heat conduction member for conducting heat between the light-emitting element and the first heat conduction member.
摘要:
A light emitting apparatus is provided, and the light emitting apparatus has a light emitting device mounted on a substrate or a resin package where a substrate surface or the resin package is resin-encapsulated by an encapsulating resin section added with a phosphor in such a manner to cover the light emitting device. A surface resin layer of a different color from that of the encapsulating resin section is provided on a surface side of the encapsulating resin section.
摘要:
By using a light emitting device including an insulating substrate and a light emitting unit formed on the insulating substrate, the light emitting unit including: a plurality of linear wiring patterns disposed on the insulating substrate in parallel with one another, a plurality of light emitting elements that are mounted between the wiring patterns while being electrically connected to the wiring patterns, and a sealing member for sealing the light emitting elements, as well as a method for manufacturing thereof, it becomes possible to provide a light emitting device that achieves sufficient electrical insulation and has simple manufacturing processes so that it can be manufactured at a low cost, and a method for manufacturing the same.
摘要:
By using a light emitting device including a substrate and a light emitting unit, the light emitting unit including: a plurality of light emitting elements that are mounted on substrate and electrically connected to external electrodes; a first sealing member layer containing a first fluorescent material, formed to cover light emitting elements; and a second sealing member layer containing a second fluorescent material, formed on first sealing member layer, as well as a method for manufacturing thereof, it becomes possible to provide a light emitting device capable of suppressing color shifts and the like by the fluorescent materials, and of being easily manufactured, as well as a method for manufacturing the same.
摘要:
The present invention relates to a compound or a pharmacologically acceptable salt thereof having superior glucokinase activating activity, and is a compound represented by general formula (I), or pharmacologically acceptable salt thereof: [wherein, A represents, for example, an oxygen atom or sulfur atom, R1 represents, for example, a C1-C6 alkyl group, a C1-C6 alkoxy group or a C1-C6 halogenated alkyl group, A and R1 together with the carbon atom bonded thereto form a heterocyclic group that may be substituted with 1 to 3 group(s) independently selected from Substituent Group α, R2 represents a phenyl group that may be substituted with 1 to 5 group(s) independently selected from Substituent Group α or a heterocyclic group that may be substituted with 1 to 3 group(s) independently selected from Substituent Group α, R3 represents a hydroxy group or a C1-C6 alkoxy group, and Substituent Group α consists of, for example, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkyl group substituted with 1 or 2 hydroxy group(s), a C1-C6 alkylsulfonyl group, and a group represented by the formula —V—NR5R6 (wherein, V represents a carbonyl group or a sulfonyl group, and R5 and R6 may be the same or different and respectively represent a hydrogen atom or a C1-C6 alkyl group, or R5 and R6 together with the nitrogen atom bonded thereto form a 4- to 6-membered saturated heterocycle that may be substituted with 1 or 2 group(s) independently selected from a C1-C6 alkyl group and a hydroxy group, and the 4- to 6-membered saturated heterocycle may further contain one oxygen atom or nitrogen atom)].
摘要:
A light-emitting diode includes a substrate having a main surface, a light-emitting diode device arranged on the main surface, a translucent sealing resin portion sealing the light-emitting diode device so that the light-emitting diode device is implemented as an independent convex portion projecting from the main surface, and a reflector arranged on the main surface so as to surround an outer perimeter of the sealing resin portion with an inclined surface at a distance from the outer perimeter.