摘要:
A semiconductor pressure transducer comprising a disc-shaped pressure-responsive diaphragm; a pair of radial strain gauge units having a piezoresistance effect, formed by injecting an impurity in the radial direction in the surface of the diaphragm; and a pair of tangential strain gauge units having a piezoresistance effect, formed by injecting an impurity in the tangential direction in the surface of the diaphragm, wherein the distance from the pair of the radial strain gauge units to the center of the circular diaphragm is greater than the distance from the pair of the tangential strain gauge units to the center of the circular diaphragm.
摘要:
A bridge circuit with four arms including semiconductor strain gauge elements has input terminals for coupling a DC power supply with a pair of diagonally opposite junctions of the bridge circuit per se and output terminals coupled with a pair of remaining diagonally opposite junctions. Initial zero-point temperature compensators each are connected in series and in parallel to each of semiconductor strain gauge elements on adjacent two arms of the bridge circuit. Temperature compensators for zero-point shift adjustment are each provided between the adjacent arms closer to each output terminal. A temperature compensator for span adjustment is provided between one of the input terminals and the DC power source. A constant current control unit for feeding a constant current to the bridge circuit is provided between the other input terminal and the DC power supply.
摘要:
A semiconductor transducer comprising an improved strain-yielding body yielding a strain in response to the impartation of a force or displacement, and a semiconductor strain gauge bonded to the strain-yielding body. The improved strain-yielding body is made of an iron-nickel-cobalt alloy containing 28.2 to 31.0% by weight of nickel and 15.0 to 19.5% by weight of cobalt. This iron-nickel-cobalt alloy is initially heated up to a temperature above 600.degree. C. for the purpose of standard heat treatment for removing its internal strain. After the standard heat treatment, the iron-nickel-cobalt alloy is subjected to cold working at a working rate of more than and including 60%, and is then subjected to heat treatment at a temperature between 350.degree. C. and 600.degree. C. The heat-treated iron-nickel-cobalt alloy is shaped into the predetermined form of the strain-yielding body.
摘要:
A semiconductor pressure transducer including a measuring diaphragm of semiconductor material for sensing pressure supported by a support member of the same material. An oxide layer and a thin glass layer are interposed between the measuring diaphragm and the support member.
摘要:
A capacitive pressure sensor and its manufacturing method are disclosed. An amplifier is formed on the main surface of a first semiconductor substrate by a diffusion process, and its surface is covered with an insulating film. An electrode is vapor-deposited on the surface of the amplifier and electrically connected to the amplifier through a through hole formed in the insulating film. For forming a diaphragm, the surface of a second semiconductor substrate disposed facing the electrode to form a capacitor, which is opposite to the surface of the second semiconductor substrate facing the electrode, is partially etched away to form a depression. The first and second semiconductor substrates are anodically bonded to each other using a glass layer.
摘要:
A method for generating X-rays in an X-ray tube, comprises the steps of: rotating an X-ray target of a rotating anode, the X-ray target having a metal coated layer thereon; applying electron beams emitted from a cathode onto the metal coated layer of the X-ray target; and offsetting thermal deformation of the X-ray target due to the application of the electron beams by deformation of the X-ray target due to centrifugal force, thereby maintaining a position of the X-ray target in a direction of the application of the electron beams, at a room temperature of the X-ray target, thus generating the X-rays.
摘要:
A nozzle head of an ink-jet printing apparatus according to the present invention comprises an ink reservoir for storing the ink supplied from an ink tank, a pump chamber provided between said ink reservoir and a nozzle for injecting ink particles, and a fluid diode provided between said ink reservoir and said pump chamber, which are all formed in a same substrate, wherein said pump chamber is caused to change its volume responsive to electric signals so that the ink stored therein is injected from said nozzle, and the ink is prevented from reversely flowing from said pump chamber to said ink reservoir when the volume of the pump chamber is changed, thereby to improve the frequency response of ink particles injected from the nozzle.
摘要:
A strain gauge is formed on one main surface of a semiconductor single crystal substrate while an insulating oxide film is formed on the other main surface of the substrate. A metal junction layer including several layers inclusive of eutectic alloy layers is formed on the surface of the insulating oxide film and the thus prepared structure is mounted on a metal strain generator. By heating this assembly to temperatures approximating to the eutectic point of the eutectic alloy layer, the semiconductor substrate and the metal strain generator are joined together.
摘要:
A semiconductor substrate has a major surface, another major surface on the opposite side of the first major surface, a strain gauge stripe formed in the central portion of the second major surface by diffusing an impurity therein, and electrodes connected to the strain gauge stripes. These strain gauge stripes are spaced from the peripheral edge of the second major surface by a distance greater than 1/3 of the length of the same major surface. The first major surface of the semiconductor substrate is bonded to an elastic metal load plate.
摘要:
Four semiconductor strain gauges constitute a bridge circuit. This bridge circuit and a sensitivity temperature compensation circuit are connected in series, and a constant voltage is applied to the series circuit. The sensitivity temperature compensation circuit varies a voltage across the bridge circuit, depending upon temperatures. The constant voltage is divided to produce a predetermined voltage. The predetermined voltage is selected to be equal to the voltage of one output side node of the bridge circuit at the time when the semiconductor strain gauges are unstrained and at a predetermined temperature. The point of this voltage and the output side node are connected through a resistor so as to perform zero-point temperature compensation.