摘要:
A manufacturing method for manufacturing a semiconductor substrate has first annealing step for annealing silicon single crystal to permit oxygen embryos or oxygen precipitations grown from the oxygen embryos precipitating in a predetermined region and a second annealing step for permitting said oxygen embryos or said oxygen precipitations to contract using a second temperature range higher than the first temperature range, said second temperature range being high enough to contract said oxygen embryos and low enough to prevent redistribution of boron from affecting to device characteristics, to form a denuded zone in said predetermined region at the principal surface. An inspection method for inspecting a semiconductor substrate further has measuring step, subsequent to said first and second annealing steps for measuring the density of oxygen embryos grown into oxygen precipitations among those precipitated in said silicon single crystal.
摘要:
There are provided a method of inspecting and evaluating semiconductor substrates, good quality semiconductor substrates, a method of manufacturing good quality semiconductor substrates, and a method of manufacturing semiconductor devices using good quality semiconductor substrates.A semiconductor substrate is processed with aqueous basic solution. In this process, the substrate is dipped in the aqueous solution or exposed to a vapor of the aqueous solution. With this process, the surface of the substrate is selectively etched. The substrate surface after the etching process is radiated with a laser beam to measure a light scattered point density. The quality of the substrate can be judged in accordance with the measured density. A thermal treatment may be carried out before or after processing the substrate with the aqueous basic solution. The thermal treatment considerably changes the fine defect density on the surface of the substrate. In accordance with such a change, the quality of the substrate may be judged. If a substrate judged as having a good quality is used, a semiconductor device having a good quality substrate can be obtained.
摘要:
A semiconductor substrate is provided which can efficiently exhibit intrinsic gettering (IG) effect, is less likely to cause slipping or dislocation, and causes no significant lowering in mechanical strength. The semiconductor substrate has bulk micro defects dispersed at a density of not less than 1011 micro defects/cm3 in the interior thereof.
摘要:
When a surface of semiconductor wafer is treated for gettering, ultrasonic waves are caused to propagate along the surface of the semiconductor wafer, through pure water. Mechanical damages are formed on the surface of the semiconductor wafer along which the ultrasonic waves propagated, the damages serving as a back side damage.
摘要:
An ultrasonic wave is propagated to the surface of a semiconductor wafer in pure water to effect the gettering treatment with respect to the surface of the semiconductor wafer. Mechanical damages are formed on the surface of the semiconductor wafer to which the ultrasonic wave is applied, and at the same time the surface of the semiconductor wafer is cleaned. The mechanical damages serve to function as back side damage.
摘要:
A semiconductor wafer has a bevel contour formed along the periphery thereof, products formed on the wafer, and an ID mark formed on the bevel contour. The ID mark shows at least the properties, manufacturing conditions, and test results of the products.
摘要:
A semiconductor wafer has a bevel contour formed along the periphery thereof, products formed on the wafer, and an ID mark formed on the bevel contour. The ID mark shows at least the properties, manufacturing conditions, and test results of the products.
摘要:
A semiconductor wafer has a bevel contour formed along the periphery thereof, products formed on the wafer, and an ID mark formed on the bevel contour. The ID mark shows at least the properties, manufacturing conditions, and test results of the products.
摘要:
First, silicon wafers are formed by cutting silicon monocrystalline ingot into slices. Then back side and main surfaces of the wafers are subjected to lapping and etching processes. Next, the wafers are submerged into substantially pure water and ultrasonic waves are applied to the wafer surface via the water to clean at least one of the surfaces of each of the wafers and form gettering damage on the wafer surface. After this, the main surfaces of the wafers which have been subjected to the cleaning and damage-forming process and on which semiconductor elements are to be formed are polished into mirror finish.
摘要:
The gate oxide film is prevented from being thinned partially. The semiconductor substrate (wafer) can be etched (processed) under excellent conditions. The impurities on the wafer surface can be analyzed and further reduced. In the first aspect, the substrate is irradiated with ultraviolet rays in contact with an F-containing aqueous solution, so that the oxide film and the substrate can be etched at roughly the same etching speed under excellent controllability without deteriorating the planarization of the substrate. In the second aspect, the substrate is etched by irradiating ultraviolet rays during exposure to an acid aqueous solution, so that surface metallic contamination and particles can be removed without deteriorating the wafer surface roughness. Further, the impurity elements in the outermost surface layer of the wafer can be analyzed at high precision by analyzing elements contained in the acid aqueous solution used for the etching. According to the third aspect, holes and electrons are recombined in the polycrystal silicon during irradiation of the ultraviolet rays, and metallic impurities are dissolved into the aqueous solution as ions, so that metallic impurities in the polycrystal silicon can be reduced.