Abstract:
An object of the present invention is to provide a Magneto-Resistance (MR) element showing a high Magneto-Resistance (MR) ratio and having a suitable Resistance-Area (RA) for device applications. The MR element of the present invention has a laminated structure including a first ferromagnetic layer 16, a non-magnetic layer 18, and a second ferromagnetic layer 20 on a substrate 10, wherein the first ferromagnetic layer 16 includes a Heusler alloy, the second ferromagnetic layer 20 includes a Heusler alloy, the non-magnetic layer 18 includes a I-III-VI2 chalcopyrite-type compound semiconductor, and the non-magnetic layer 18 has a thickness of 0.5 to 3 nm, and wherein the MR element shows a Magneto-Resistance (MR) change of 40% or more, and has a resistance-area (RA) of 0.1 [Ωμm2] or more and 3 [Ωμm2] or less.
Abstract:
To realize a spintronics device with high performance, it is an object of the present invention to provide a Co2Fe-based Heusler alloy having a spin polarization larger than 0.65, and a high performance spintronics devices using the same. A Co2Fe(GaxGe1-x) Heusler alloy shows a spin polarization higher than 0.65 by a PCAR method in a region of 0.25
Abstract:
The invention provides a nanocomposite magnet, which has achieved high coercive force and high residual magnetization. The magnet is a non-ferromagnetic phase that is intercalated between a hard magnetic phase with a rare-earth magnet composition and a soft magnetic phase, wherein the non-ferromagnetic phase reacts with neither the hard nor soft magnetic phase. A hard magnetic phase contains Nd2Fe14B, a soft magnetic phase contains Fe or Fe2Co, and a non-ferromagnetic phase contains Ta. The thickness of the non-ferromagnetic phase containing Ta is 5 nm or less, and the thickness of the soft magnetic phase containing Fe or Fe2Co is 20 nm or less. Nd, or Pr, or an alloy of Nd and any one of Cu, Ag, Al, Ga, and Pr, or an alloy of Pr and any one of Cu, Ag, Al, and Ga is diffused into a grain boundary phase of the hard magnetic phase of Nd2Fe14B.
Abstract:
The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
Abstract:
Provided are an element structure in which a magnetic layer has a high magnetic anisotropy constant and saturated magnetization properties in a thickness of 1.5 nm or less, and a magnetic device that uses the element structure. A BCC metal nitride/CoFeB/MgO film structure that uses a nitride of a BCC metal as a seed layer is fabricated. The nitride amount in the BCC metal nitride is preferably less than 60% in terms of volume ratio based on 100% BCC metal. It is thereby possible to readily obtain a perpendicularly magnetized film having the magnetic properties that the perpendicular magnetic anisotropy is 0.1×106 erg/cm3 or more and the saturated magnetization is 200 emu/cm3 or more, even when the thickness of the magnetic layer is 0.3 nm or more and 1.5 nm or less.
Abstract translation:提供一种其中磁性层具有高的磁各向异性常数和1.5nm以下的厚度的饱和磁化特性的元件结构,以及使用元件结构的磁性器件。 制造使用BCC金属的氮化物作为种子层的BCC金属氮化物/ CoFeB / MgO膜结构。 BCC金属氮化物中的氮化物量优选以基于100%BCC金属的体积比计小于60%。 因此,即使磁性层的厚度为(μm),也可以容易地得到垂直磁各向异性为0.1×10 6Ω/ cm 3以上且磁饱和磁化强度为200emu / cm 3以上的磁特性的垂直磁化膜 0.3nm以上且1.5nm以下。
Abstract:
The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
Abstract:
The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
Abstract:
Provided are an element structure in which a magnetic layer has a high magnetic anisotropy constant and saturated magnetization properties in a thickness of 1.5 nm or less, and a magnetic device that uses the element structure. A BCC metal nitride/CoFeB/MgO film structure that uses a nitride of a BCC metal as a seed layer is fabricated. The nitride amount in the BCC metal nitride is preferably less than 60% in terms of volume ratio based on 100% BCC metal. It is thereby possible to readily obtain a perpendicularly magnetized film having the magnetic properties that the perpendicular magnetic anisotropy is 0.1×106 erg/cm3 or more and the saturated magnetization is 200 emu/cm3 or more, even when the thickness of the magnetic layer is 0.3 nm or more and 1.5 nm or less.
Abstract translation:提供一种其中磁性层具有高的磁各向异性常数和1.5nm以下的厚度的饱和磁化特性的元件结构,以及使用元件结构的磁性器件。 制造使用BCC金属的氮化物作为种子层的BCC金属氮化物/ CoFeB / MgO膜结构。 BCC金属氮化物中的氮化物量优选以基于100%BCC金属的体积比计小于60%。 因此,即使磁性层的厚度为(μm),也可以容易地得到垂直磁各向异性为0.1×10 6Ω/ cm 3以上且磁饱和磁化强度为200emu / cm 3以上的磁特性的垂直磁化膜 0.3nm以上且1.5nm以下。
Abstract:
[Problem to be Solved]To realize a spintronics device with high performance, it is an object of the present invention to provide a Co2Fe-based Heusler alloy having a spin polarization larger than 0.65, and a high performance spintronics devices using the same.[Solution]A Co2Fe(GaxGe1-x) Heusler alloy shows a spin polarization higher than 0.65 by a PCAR method in a region of 0.25