Abstract:
An electronic device assembly for dense mounting of electronic devices and method of connecting the electronic devices are disclosed. Conductive portions implemented by metal bumps and sealing portions implemented by adhesive seal resin are connected by thermocompress ion at the same time between two electronic devices. This may be repeated between three or more electronic device.
Abstract:
There is provided a thin film capacitor including (a) a lower electrode, (b) an insulating layer formed burying the lower electrode therein and formed with a via-hole reaching the lower electrode, (c) a dielectric layer formed on an inner sidewall of the via-hole and covering an exposed surface of the lower electrode therewith, and (d) an upper electrode surrounded by the dielectric layer. In accordance with the thin film capacitor, the upper electrode is formed to be buried in the via-hole formed above the lower electrode. Hence, it is possible to prevent short-circuit between the upper and lower electrodes, and degradation of the dielectric layer during fabrication of a thin film capacitor, both of which enhances reliability of a capacitor. In addition, a multi-layered wiring structure could be readily fabricated on the thin film capacitor.
Abstract:
A printed circuit board is provided including a lower interconnect, a base insulating film formed on the lower interconnect, and a via hole formed on the base insulating film, and an upper interconnect connected to the lower interconnect with the via hole. The base insulating film has a thickness of about 3 to 100 nullm and has a breaking strength of about 80 MPa or more at a temperature of 23null C. and when the base insulating film is defined to have a breaking strength nullanull at a temperature of null65null C. and a breaking strength nullbnull at a temperature of 150null C., a value of a ratio (a/b) is about 4.5 or less.
Abstract:
A wiring board for high dense mounting comprises at least one layer of interlayer insulator and at least one layer of conductive wiring pattern formed on a base material. The interlayer insulator comprises a polybenzoxazole film. An adhesive layer comprising at least one selected from the group consisting of Ti, Ti-containing compounds and Ni is formed between the polybenzoxazole film and the conductive wiring pattern. The wiring board has a high heat resistance, low dielectric constant, low water absorption degree, low thermal expansion coefficient, and high adhesion between conductors and insulators. The wiring board is also excellent in film strength and shear extensibility, capable of enduring a stress in mounting of a semiconductor device, excellent in reliability, and optimal for high speed and high dense mounting.
Abstract:
A semiconductor package board for mounting thereon a semiconductor chip includes a metal base having an opening for receiving therein the semiconductor chip and a multilayer wiring film layered onto the metal base. The semiconductor chip is flip-chip bonded onto the metal pads disposed on the multilayer wiring film within the opening. The surface of the metal base is flush with the top surface of the semiconductor chip received in the opening. The resultant semiconductor device has a larger number of external pins and a smaller deformation without using a stiffener.