Abstract:
A honeycomb structure has a plurality of cells formed by a plurality of partition walls. The partition walls are formed of a porous material composed predominantly of cordierite. Each partition wall includes surface layer portions having a porosity of 50% or more and an inside portion having a porosity of 50% or more, the surface layer portions being portions ranging respectively from opposite surfaces to a depth corresponding to 25% of the thickness of the partition wall, and the inside portion being the other portion. The surface layer portions and the inside portion both include pores having axial pore widths of less than 30 μm and pores having axial pore widths of 30 μm or more. A mean axial pore width in the surface layer portions is smaller than a mean axial pore width in the inside portion.
Abstract:
A heater part of a planar sensor element includes: a Pt heater element; and an insulating layer including 90-99.9 wt % of an insulating material having a different coefficient of thermal expansion from a solid electrolyte forming a base part of the element. The heater part other than a heater electrode is buried in the base part. The insulating layer includes: a porous portion having a porosity of 20-40%; and a dense portion having a porosity of 4% or less. The heater element is covered with the dense portion. A laminated portion in which the porous portion and the dense portion are laminated has a total thickness of 25-100 μm. The dense portion has a thickness of 5 μm or more. A thickness ratio of the dense portion to the porous portion is 0.05 to 2.0.
Abstract:
The present invention provides a voltage nonlinear resistor containing zinc oxide as a major component, wherein the degree of orientation f(100) of the (100) plane of zinc oxide is 0.40 or more and is represented by the following equation: f(100)=I(100)/(I(100)+I(002)+I(101)), where I(hkl) represents the peak intensity (integral) of a (hkl) plane.
Abstract:
A heater part of a planar sensor element includes: a Pt heater element; and an insulating layer including 90-99.9 wt % of an insulating material having a different coefficient of thermal expansion from a solid electrolyte forming a base part of the element. The heater part other than a heater electrode is buried in the base part. The heater element has a thickness of 10-50 μm and is covered with the insulating layer. The insulating layer has a porosity of 4% or less and a thickness of 50-150 μm. The distances of the insulating layer from an end portion of the element, from a main surface on which the heater electrode is located, and from a side surface of the element are respectively 0.25-0.75 mm, 0.20-0.60 mm, and 0.20-0.60 mm. The total length of the element is 80.0 mm or less.
Abstract:
The honeycomb structure includes a honeycomb structure body made of a zeolite material containing at least a coarse particle zeolite having a large average particle diameter (coarse zeolite particles). A fine particle zeolite having an average particle diameter smaller than that of the coarse particle zeolite (fine zeolite particles), and an inorganic bonding material, the coarse particle zeolite (the coarse zeolite particles) is a chabazite type zeolite in which an average particle diameter of primary particles is 2 μm or more and 6 μm or less, and in the fine particle zeolite (the fine zeolite particles), an average particle diameter of primary particles is 0.02 μm or more and smaller than 2 μm, and in the zeolite material which is comprised the honeycomb structure body, a ratio of a volume of pores having pore diameters of 0.02 to 0.15 μm to a volume of all pores is 42% or less.
Abstract:
A mixed powder was prepared by weighing Yb2O3 and SrCO3 in such a way that the molar ratio became 1:1. The resulting mixed powder was subjected to uniaxial pressure forming, so as to produce a disc-shaped compact. The compact was heat-treated in an air atmosphere, so that a complex oxide was synthesized. The resulting complex oxide was pulverized. After the pulverization, a slurry was taken out and was dried in a nitrogen gas stream, so as to produce a synthesized powder material. The resulting synthesized powder material was subjected to uniaxial pressure forming, so as to produce a disc-shaped compact. The resulting compact was fired by a hot-press method, so as to obtain a corrosion-resistant member for semiconductor manufacturing apparatus. The resulting corrosion-resistant member was made from a SrYb2O4.
Abstract:
A heater part of a planar sensor element includes: a Pt heater element; and an insulating layer including 90-99.9 wt % of an insulating material having a different coefficient of thermal expansion from a solid electrolyte forming a base part of the element. The heater part other than a heater electrode is buried in the base part. The insulating layer includes: a porous portion having a porosity of 20-40%; and a dense portion having a porosity of 4% or less. The heater element is covered with the dense portion. A laminated portion in which the porous portion and the dense portion are laminated has a total thickness of 25-100 μm. The dense portion has a thickness of 5 μm or more. A thickness ratio of the dense portion to the porous portion is 0.05 to 2.0.
Abstract:
A heater part of a planar sensor element includes: a heater element containing Pt; an insulating layer covering the heater element; and a heater electrode located on a main surface of the sensor element to be exposed. A portion of the heater part other than the heater electrode is buried in a base part formed of a solid electrolyte. The insulating layer at least contains MgO, MgAl2O4, and Mg4Nb2O9 in a weight percentage of 97 wt % to 100 wt % in total. MgO, MgAl2O4, and Mg4Nb2O9 are contained in weight percentages of 30 wt % to 60 wt %, 30 wt % to 60 wt %, and 0.5 wt % to 15 wt %, respectively. The insulating layer has a porosity of 4% or less.
Abstract:
A heater part of a planar sensor element includes: a Pt heater element; and an insulating layer including 90-99.9 wt % of an insulating material having a different coefficient of thermal expansion from a solid electrolyte forming a base part of the element. The heater part other than a heater electrode is buried in the base part. The heater element has a thickness of 10-50 μm and is covered with the insulating layer. The insulating layer has a porosity of 4% or less and a thickness of 50-150 μm. The distances of the insulating layer from an end portion of the element, from a main surface on which the heater electrode is located, and from a side surface of the element are respectively 0.25-0.75 mm, 0.20-0.60 mm, and 0.20-0.60 mm. The total length of the element is 80.0 mm or less.
Abstract:
The voltage nonlinear resistive element includes a resistor containing a joined body in which a zinc oxide ceramic layer composed mainly of zinc oxide and having a volume resistivity of less than 1.0×10−2 Ωcm is joined to a rare-earth metal oxide layer composed mainly of a rare-earth metal oxide, and a pair of electrodes disposed on the resistor such that an electrically conductive path passes through a junction between the zinc oxide ceramic layer and the rare-earth metal oxide layer. In this element, the zinc oxide ceramic layer of the joined body has a lower volume resistivity than before. This can result in a lower clamping voltage in a high electric current region than before.