Abstract:
A light emitting device includes: a substrate; a light emitting element; a wavelength conversion layer; and a wall surrounding the wavelength conversion layer, having an opening portion exposing at least a part of a top surface of the wavelength conversion layer, and containing a light reflective material. The surface of the wall includes a top surface provided at a higher position than the top surface of the wavelength conversion layer, and an inner surface forming the opening portion. The wall includes a first portion surrounding the wavelength conversion layer, and a second portion provided over the first portion and surrounding the first portion. The opening portion is hollow. An angle of a corner portion between the top surface and the inner surface of the wall is in a range of 90 degrees or greater and less than 180 degrees.
Abstract:
A light-emitting device includes: a substrate; a plurality of light-emitting elements mounted to the substrate; and a phosphor layer provided on the plurality of light-emitting elements, the phosphor layer including: a plurality of phosphor particles, and a glass layer covering surfaces of the phosphor particles, wherein the phosphor particles are bonded to each other by the glass layer, and an air layer is formed between the phosphor particles.
Abstract:
A light emitting device includes: a substrate; a plurality of light emitting elements mounted on the substrate; a covering member disposed on the substrate between adjacent ones of the light emitting elements such that an upper surface of the covering member is substantially coplanar with upper surfaces of the light emitting elements, wherein the covering member is a molded body containing an inorganic material powder and a binder; and a light transmissive member disposed on or above the plurality of light emitting elements.
Abstract:
A light-emitting device includes a substrate, a light-emitting element provided on the substrate, the light-emitting element being configured to emit a first light, a wavelength conversion layer provided on the light-emitting element and containing a plurality of wavelength conversion particles configured to convert a wavelength of a part of the first light and to emit a second light, a light-transmissive plate provided above the wavelength conversion layer, and a wall including a light-reflective material, the wall surrounding the wavelength conversion layer and the light-transmissive plate and being in contact with a lateral surface of the light-transmissive plate at an inner surface of the wall. An upper portion of the wavelength conversion layer includes protrusions and recesses defined by the plurality of wavelength conversion particles. The wavelength conversion layer and the light-transmissive plate define an air layer therebetween.
Abstract:
A method of manufacturing a light emitting device, using a spray coating method, a fluorescent material can be easily adhered on corner portions and side surfaces of an LED chip, a lens-shaped light transmissive resin member surface, an optical lens surface, etc., and a spray coating machine used in the method. The method includes mounting an LED chip on a substrate member, applying a spray coating to a coating object including the LED chip by spraying a powder-containing solution. The applying a spray coating is performed such that a powder-containing solution is sprayed through a solution nozzle arranged above the coating object, as a spray direction of the powder-containing solution indicating a central axis, while using at least one gas nozzle arranged in a surrounding relationship to the central axis, spraying a gas toward the central axis to alter the direction of the spray made of the powder-containing solution.
Abstract:
A light emitting device includes: a substrate; a light emitting element; a wavelength conversion layer; and a wall surrounding the wavelength conversion layer, having an opening portion exposing at least a part of a top surface of the wavelength conversion layer, and containing a light reflective material. The surface of the wall includes a top surface provided at a higher position than the top surface of the wavelength conversion layer, and an inner surface forming the opening portion. The wall includes a first portion surrounding the wavelength conversion layer, and a second portion provided over the first portion and surrounding the first portion. The opening portion is hollow. An angle of a corner portion between the top surface and the inner surface of the wall is in a range of 90 degrees or greater and less than 180 degrees.
Abstract:
The method includes the steps of: storing slurry containing optical matter particles into a slurry tank; stirring the slurry inside the slurry tank by causing a bubble producing unit arranged below a liquid surface of the slurry to produce bubbles; and spraying the slurry onto a coating target including a light emitting element from a nozzle arranged above the coating target.
Abstract:
A light emitting device has a plurality of light emitting elements, a heat spreading member on which the plurality of light emitting elements are mounted, and having a bottom face, an insulating member having a recess that includes side walls and a bottom wall, a top face of the bottom wall being in contact with the bottom face of the heat spreading member, and a circuit board having a circuit that is provided on the heat spreading member and supplies power to the plurality of light emitting elements.
Abstract:
A light emitting device includes a resin-molded body including: a light emitting window, a white portion, and a black portion, wherein, in a top plan view of the light emitting device, the white portion surrounds the light emitting window, and the black portion surrounds the white portion; an electrode protruding from an outer surface of the resin-molded body; and a plurality of light emitting elements mounted in an area surrounded by the white portion, the plurality of light emitting elements including at least two light emitting elements that are different in type from one another.
Abstract:
A light emitting device includes a resin-molded body including: a light emitting window, a white portion, and a black portion, wherein, in a top plan view of the light emitting device, the white portion surrounds the light emitting window, and the black portion surrounds the white portion; an electrode protruding from an outer surface of the resin-molded body; and a plurality of light emitting elements mounted in an area surrounded by the white portion, the plurality of light emitting elements including at least two light emitting elements that are different in type from one another.