Abstract:
An idle speed control system for a direct injection spark ignition engine controlled to operate in either homogeneous air/fuel modes or stratified air/fuel modes. A desired idle speed is set to optimize fuel economy and avoid rough engine operation during various air/fuel operating modes. During rough idle conditions and non stoichiometric air/fuel operation engine air/fuel is enriched until either rough idle ceases or a rich air/fuel limit is reached. During smooth idle operation, and non stoichiometric air/fuel operation, engine air/fuel is enleaned until either rough idle occurs, a lean air/fuel limit reached, or desired fuel economy attained. After the lean limit is reached, and when operating in a non-stoichiometric non-stratified air/fuel mode, and when not operating at desired fuel economy, ignition timing is advanced until an advance limit is reached and desired idle speed is thereafter decreased.
Abstract:
A method of continuously estimating barometric pressure values for use in an engine control system. The vehicle includes an manifold absolute pressure (MAP) sensor, ambient air temperature sensor and a throttle position sensor. The method comprises the steps of determining the manifold absolute pressure, ambient air temperature, and throttle position. When the throttle position is at wide-open throttle, the method generates a barometric pressure value ({circumflex over (P)}anew) as a function of the manifold absolute pressure value (P) and previously estimated barometric pressure. Otherwise, the method generates a barometric pressure value as a function of the manifold absolute pressure value (P), and an estimated intake manifold pressure ({circumflex over (P)}) and estimated mass airflow (). In a further embodiment, a mass airflow sensor is also used to generate the estimated barometric pressure value when the engine is not operating at wide-open throttle.
Abstract:
An idle speed control system for a direct injection spark ignition engine controlled to operate in either homogeneous air/fuel modes or stratified air/fuel modes. When operating in a stratified air/fuel mode, engine idle speed is controlled by controlling the engine air/fuel during unthrottled operation. When operating stratified and also throttled, engine idle speed is controlled by both controlling air/fuel and controlling the throttle. When operating in the homogeneous modes, engine idle speed is controlled by controlling both the throttle and ignition timing.
Abstract:
A mode control system for a direct injection spark ignition engine is controlled to operate in either homogeneous air/fuel modes or stratified air/fuel modes. When transitioning from homogeneous to stratified mode, the throttle is used to adjust manifold pressure to a level where it is possible to operate in a stratified mode with a torque equal to that of the homogeneous model. When transitioning from a stratified to a homogeneous model, the throttle is used to adjust manifold pressure to a level where it is possible to operate in a homogeneous model with a torque equal to that of the stratified mode. During the transition, other engine operating conditions are used to assist in controlling engine torque.
Abstract:
A method of controlling an internal combustion engine is described. The engine is capable of operating in at least two engine operating modes. As an example, the engine can operate in a stratified or a homogeneous combustion mode. The engine operating mode is selected based on a determined atmospheric pressure.
Abstract:
A vapor recovery control system for a direct injection spark ignition engine is used to purge vapors in both a homogeneous air/fuel and stratified air/fuel mode. When purging vapors in a stratified mode, a portion of the cylinders receive purge vapors and operate in a homogeneous mode while the rest of the cylinders continue to operate in a stratified mode.
Abstract:
Methods and devices performing the method for wireless communications are disclosed, where the method includes retrieving historical communications information for a plurality of receive chains for receiving communications from a wireless node; determining a number of receive chains from the plurality of receive chains to enable in a discontinuous reception mode based on the historical communications information; and enabling the number of receive chains to receive a communication from the wireless node in a communications cycle. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A pharmaceutical solution of taxanes, its preparation method, a composition comprising said solution and its pharmaceutical combination package are disclosed. Said pharmaceutical solution comprises taxanes, a pH regulator and a solvent, wherein the pH regulator is a water-soluble acid.
Abstract:
This invention provides REL inhibitors which interfere with the DNA binding capacity of a REL protein. Additionally this invention provides methods of treating, abrogating, or preventing diseases which respond with a positive clinical score to a REL inhibitor. Methods of identifying REL inhibitor based on a REL protein three dimensional model are described.
Abstract:
A microfluidic system has a pipette system comprising a plurality of pipettes, a microfluidic chip arranged proximate the pipette system, an imaging optical detection system arranged proximate the microfluidic chip, and an image processing system in communication with the imaging optical detection system. The microfluidic chip has a plurality of cell culture chambers defined by a body of the microfluidic chip, each cell culture chamber being in fluid connection with an input channel and an output channel defined by the microfluidic chip. The pipette system is constructed and arranged to at least one of inject fluid through the plurality of pipettes into the plurality of input channels or extract fluid through the plurality of pipettes from the plurality of output channels while the microfluidic system is in operation.