摘要:
A TFET includes a source region (110, 210), a drain region (120, 220), a channel region (130, 230) between the source region and the drain region, and a gate region (140, 240) adjacent to the channel region. The source region contains a first compound semiconductor including a first Group III material and a first Group V material, and the channel region contains a second compound semiconductor including a second Group III material and a second Group V material. The drain region may contain a third compound semiconductor including a third Group III material and a third Group V material.
摘要:
A TFET includes a source region (110, 210), a drain region (120, 220), a channel region (130, 230) between the source region and the drain region, and a gate region (140, 240) adjacent to the channel region. The source region contains a first compound semiconductor including a first Group III material and a first Group V material, and the channel region contains a second compound semiconductor including a second Group III material and a second Group V material. The drain region may contain a third compound semiconductor including a third Group III material and a third Group V material.
摘要:
A TFET includes a source region (110, 210), a drain region (120, 220), a channel region (130, 230) between the source region and the drain region, and a gate region (140, 240) adjacent to the channel region. The source region contains a first compound semiconductor including a first Group III material and a first Group V material, and the channel region contains a second compound semiconductor including a second Group III material and a second Group V material. The drain region may contain a third compound semiconductor including a third Group III material and a third Group V material.
摘要:
Conductivity improvements in III-V semiconductor devices are described. A first improvement includes a barrier layer that is not coextensively planar with a channel layer. A second improvement includes an anneal of a metal/Si, Ge or SiliconGermanium/III-V stack to form a metal-Silicon, metal-Germanium or metal-SiliconGermanium layer over a Si and/or Germanium doped III-V layer. Then, removing the metal layer and forming a source/drain electrode on the metal-Silicon, metal-Germanium or metal-SiliconGermanium layer. A third improvement includes forming a layer of a Group IV and/or Group VI element over a III-V channel layer, and, annealing to dope the III-V channel layer with Group IV and/or Group VI species. A fourth improvement includes a passivation and/or dipole layer formed over an access region of a III-V device.
摘要:
Conductivity improvements in III-V semiconductor devices are described. A first improvement includes a barrier layer that is not coextensively planar with a channel layer. A second improvement includes an anneal of a metal/Si, Ge or SiliconGermanium/III-V stack to form a metal-Silicon, metal-Germanium or metal-SiliconGermanium layer over a Si and/or Germanium doped III-V layer. Then, removing the metal layer and forming a source/drain electrode on the metal-Silicon, metal-Germanium or metal-SiliconGermanium layer. A third improvement includes forming a layer of a Group IV and/or Group VI element over a III-V channel layer, and, annealing to dope the III-V channel layer with Group IV and/or Group VI species. A fourth improvement includes a passivation and/or dipole layer formed over an access region of a III-V device.
摘要:
An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
摘要:
A TFET includes a source region (110, 210), a drain region (120, 220), a channel region (130, 230) between the source region and the drain region, and a gate region (140, 240) adjacent to the channel region. The source region contains a first compound semiconductor including a first Group III material and a first Group V material, and the channel region contains a second compound semiconductor including a second Group III material and a second Group V material. The drain region may contain a third compound semiconductor including a third Group III material and a third Group V material.
摘要:
An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
摘要:
Methods of forming hetero-layers with reduced surface roughness and bulk defect density on non-native surfaces and the devices formed thereby are described. In one embodiment, the method includes providing a substrate having a top surface with a lattice constant and depositing a first layer on the top surface of the substrate. The first layer has a top surface with a lattice constant that is different from the first lattice constant of the top surface of the substrate. The first layer is annealed and polished to form a polished surface. A second layer is then deposited above the polished surface.
摘要:
Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.