Abstract:
Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about the scattering phase function is preserved. Lens-based and lens-free fiber optic LEBS probes are described that are capable of measuring optical properties of a target tissue through depth-limited measurements of backscattering angles within the enhanced backscattered cone.
Abstract:
A method and system to measure and image the full optical scattering properties by inverse spectroscopic optical coherence tomography (ISOCT) is disclosed. Tissue is modeled as a medium with continuous refractive index (RI) fluctuation and such a fluctuation is described by the RI correlation functions. By measuring optical quantities of tissue (including the scattering power of the OCT spectrum, the reflection albedo α defined as the ratio or scattering coefficient μs, and the back-scattering coefficient μb), the RI correlation function can be inversely deduced and the full set of optical scattering properties can be obtained.
Abstract:
The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
Abstract:
Disclosed are compositions comprising myokines and their methods of preparation and use. The disclosed myokine compositions and methods may comprise myokines having a molecular weight of greater than about 10 kDa such as myostatin and metrnl. The disclosed myokine compositions and methods may be utilized for treating and/or preventing cell proliferative and metabolic diseases and disorders. In particular, the disclosed myokine compositions and methods may be utilized for treating and/or preventing cell proliferative and metabolic diseases and disorders, such as cancer, and metabolic diseases and disorders, such as diabetes, non-alcoholic fatty liver disease, and heart disease.
Abstract:
Provided herein are chromatin protection therapeutics (CPTs) and methods of targeting chromatin heterogeneity for the treatment of cancer therewith. In particular compositions and methods are provided that target physical variations in chromatin topology, reduce chromatic heterogeneity, and treat cancer or inhibit the development of resistance to other cancer therapeutics.
Abstract:
The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
Abstract:
The present invention, in one aspect, relates to a method for distinguishing between possible adenomatous and hyperplastic polyps using what is referred to as “Early Increase in microvascular Blood Supply” (EIBS) that exists in tissues that are close to, but are not themselves, the abnormal tissue.
Abstract:
The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
Abstract:
The present technology provides methods, systems, and apparatuses to achieve high throughput and high speed acquisition of partial wave spectroscopic (PWS) microscopic images. In particular, provided herein are high-throughput, automated partial wave spectroscopy (HT/A-PWS) instruments and systems capable of rapid acquisition of PWS Microscopic images and clinical, diagnostic, and research applications thereof.
Abstract:
The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.