Abstract:
A method of picking up and depositing optoelectronic semiconductor chips comprises generating electron-hole pairs in optoelectronic semiconductor chips, thereby generating a dipole electric field in the vicinity of the respective optoelectronic semiconductor chip, generating an electric field by a pick-up tool, and picking up the optoelectronic semiconductor chips during or after generation of the electron-hole pairs by the pick-up tool and depositing them at predetermined locations.
Abstract:
Disclosed is a radiation-emitting semi-conductor chip (1) comprising an epitaxial semi-conductor layer sequence (3) which emits electromagnetic radiation in operation. The epitaxial semi-conductor layer sequence (3) is applied on a a transparent substrate (4), wherein the substrate (4) has a first main surface (8) facing the semi-conductor layer sequence (3), a second main surface (9) facing away from the semi-conductor layer sequence (3) and a first lateral flank (10) arranged between the first main surface (8) and the second main surface (9), and the lateral flank (10) has a decoupling structure which is formed in a targeted manner from separating tracks. Also disclosed is a method for producing the semi-conductor chip, and a component comprising such a semi-conductor chip.
Abstract:
A support structure for receiving planar microchips, comprising a planar support substrate and at least two receiving elements. The receiving elements are connected to the carrier substrate and configured in such a way that they detachably hold a flat microchip between the at least two receiving elements in such a way that the microchip can be moved out with a defined minimum force transversely to a support structure plane.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
The invention relates to a semiconductor component comprising at least one semiconductor chip (10) having a semiconductor body (1) with an active region (12), a conversion element (6) and a carrier (3), the carrier (3) comprising a first moulded body (33), a first conductor body (31) and a second conductor body (32), the conductor body (31, 32) being connected to the active region (12) in an electrically conducting manner. A side of the conversion element (6) facing away from the active region (12) forms a front side (101) of the semiconductor chip (10) and a side of the carrier (3) facing away from the active region (12) forms a rear side (102) of the semiconductor chip (10), and lateral surfaces (103) of the semiconductor chip connect the front side (101) and the rear side (102) together. The semiconductor component also comprises a second moulded body (5), the semiconductor chip (10) fully penetrating the second moulded body (5) in such a way that the second moulded body (5) forms a frame around the semiconductor chip (10), and the front side (101) and the rear side (102) of the semiconductor chip (10) are free from the second moulded body (5) at least in places, and the second moulded body (5) at least partially covers free surfaces of the conversion element (6) on the lateral surfaces of the semiconductor chip (10).
Abstract:
An optoelectronic semiconductor component comprises an optoelectronic semiconductor chip (C1) having an electrically conductive substrate (T), an active part (AT) containing epitaxially grown layers, and an intermediate layer (ZS) which is arranged between the substrate (T) and the active part (AT) and contains a solder material. The optoelectronic semiconductor component further comprises an electrical connection point, which at least partially covers an underside of the substrate (T), wherein the electrical connection point comprises a first contact layer (KS1) on a side facing the substrate (T), and the first contact layer (KS1) contains aluminium or consists of aluminium.
Abstract:
In at least one embodiment, the optoelectronic semiconductor chip comprises a semiconductor layer sequence for generating an electromagnetic radiation, and also a silver mirror. The silver mirror is arranged at the semiconductor layer sequence. Oxygen is admixed with the silver of the silver mirror. A proportion by weight of the oxygen in the silver mirror is preferably at least 10−5 and furthermore preferably at most 10%.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.