Abstract:
A semiconductor device according to an exemplary embodiment includes a semiconductor substrate, a gate insulating layer, a gate electrode, an interlayer insulating layer, a contact hole, a metal layer, and a source line. The gate electrode is disposed on the gate insulating layer. The interlayer insulating layer covers the gate electrode. The contact hole penetrates the gate insulating layer and the interlayer insulating layer, causes a portion of the surface of the semiconductor substrate to be exposed, and includes an inner surface defined by a side surface of the interlayer insulating layer and a side surface of the gate insulating layer. The metal layer covers an upper surface of the interlayer insulating layer, the inner surface of the contact hole, and at least part of the portion of the surface of the semiconductor substrate exposed by the contact hole.
Abstract:
Provided is a silicon carbide semiconductor device that is further reduced in resistance. Silicon carbide semiconductor device includes silicon carbide semiconductor layer disposed on a first main surface of substrate, electrode layer containing polysilicon disposed on the silicon carbide semiconductor layer with first insulating layer interposed between the electrode layer and the silicon carbide semiconductor layer, second insulating layer that covers the silicon carbide semiconductor layer and the electrode layer, first silicide electrode that is located in first opening part formed in the first insulating layer and the second insulating layer and forms ohmic contact with a part of the silicon carbide semiconductor layer, and second silicide electrode that is located in second opening part formed in the second insulating layer and is in contact with a part of the electrode layer.
Abstract:
A semiconductor device according to an exemplary embodiment includes a semiconductor substrate, an interlayer insulating layer, at least one electrode, an inorganic protective layer, and an organic protective layer. The interlayer insulating layer is formed on the semiconductor substrate and has at least one opening. The at least one electrode has part formed on an edge of the at least one opening, and has other part electrically connected, in the at least one opening, to the semiconductor substrate. The inorganic protective layer includes an inner edge portion and an outer edge portion. The inner edge portion covers an edge of the at least one electrode. The inorganic protective layer, except for the inner edge portion, is formed on the interlayer insulating layer. The organic protective layer covers the inorganic protective layer. One of the inner edge portion and the outer edge portion of the inorganic protective layer has an undercut.
Abstract:
A semiconductor device includes: semiconductor layer having an impurity region of a first conductivity type; a gate insulating layer, at least a part of the gate insulating layer positioned on the semiconductor layer; a gate electrode positioned on the gate insulating layer and having a first surface in contact with the part of the gate insulating film and a second surface opposite to the first surface; an interlayer insulating layer covering the gate electrode; and an electrode in contact with the impurity region. The gate electrode has a recess at a corner in contact with the second surface, in a cross section of the gate electrode perpendicular to a surface of the semiconductor layer. A cavity surrounded by the gate electrode and the interlayer insulating layer is positioned in a region including at least a part of the recess.
Abstract:
This silicon carbide semiconductor device includes: a substrate with a principal surface; a silicon carbide layer which is arranged on a side of the principal surface of the substrate and which includes a first impurity region of a first conductivity type; a trench which is arranged in the silicon carbide layer and which has a bottom located in the first impurity region; a trench bottom impurity layer which is arranged in the trench to contact with at least a portion of the bottom of the trench and which is a silicon carbide epitaxial layer of a second conductivity type; a gate insulating film which covers a side surface of the trench and the trench bottom impurity layer; and a gate electrode which is arranged over at least a portion of the gate insulating film that is located inside the trench.
Abstract:
A semiconductor device of the present disclosure includes a semiconductor layer provided on a main surface of a substrate. A cell region is provided with a gate insulating film disposed on the semiconductor layer and a gate electrode disposed on the gate insulating film, and a wiring region is provided with a field insulating film disposed on the semiconductor layer and a gate wire disposed on the field insulating film. An end of the field insulating film has a convex shape in a cross section perpendicular to the main surface of the substrate, and an upper surface of the field insulating film is rougher than an upper surface of a portion of the gate wire below which the field insulating film is not disposed.