Abstract:
A light source module capable of reducing deformation of an outer contour shape of an illuminated image caused by influence of distortion of a projection lens is disclosed. The light source module includes a substrate, and multiple light sources mounted on the substrate and arranged in a row direction and a column direction. The light sources include a set of light sources arranged in the row direction and a set of light sources arranged in the column direction. The set of light sources arranged in the row direction includes more light sources than the set of light sources arranged in the column direction. Further, spacings between light sources included in the set of light sources arranged in the row direction are unequally set. Also, spacings between light sources included in the set of light sources arranged in the column direction are unequally set.
Abstract:
A light-emitting device includes a substrate and a plurality of light-emitting elements disposed above the substrate. In the plurality of light-emitting elements, a first light-emitting element and a second light-emitting element different in a rate of decrease in light output along with a temperature increase are included. The plurality of light-emitting elements include: a first serial element group including some light-emitting elements connected in series among the plurality of light-emitting elements; and a second serial element group connected in parallel with the first serial element group and including some light-emitting elements connected in series among the plurality of light-emitting elements. A ratio between a total number of first light-emitting elements and a total number of second light-emitting elements is different between the first serial element group and the second serial element group.
Abstract:
An illumination system includes: a light-emitting module including a blue LED light source that emits blue light having a light emission peak in a blue range of from 400 nm to 470 nm and a red LED light source that emits red light having a light emission peak in a red range of from 610 nm to 680 nm; a light regulator that controls a first light intensity, which is light intensity at the light emission peak in the blue range, and a second light intensity, which is light intensity at the light emission peak in the red range, in a light emission spectrum of light emitted by the light-emitting module; and a clock that measures a time. The light regulator causes the second light intensity to change in conjunction with a change in the first light intensity, in accordance with the time measured by the clock.
Abstract:
An illumination light source includes a pedestal, a mounting substrate disposed on the pedestal, a plurality of LEDs mounted on the main surface of the mounting substrate, a cover which covers a partial region of the main surface of the mounting substrate, and a fastener which fastens the pedestal and the cover together while the mounting substrate is interposed between the pedestal and the cover. The plurality of LEDs are mounted so as to surround the cover.
Abstract:
A light-emitting apparatus includes a pedestal, a substrate, an LED, an optical component, and a fastener. The LED is mounted on the substrate, and the substrate includes a first through-hole. The substrate is disposed on the pedestal. The optical component is disposed in the emission direction of light from the LED. The fastener passes through the first through-hole and fastens the optical component to the pedestal. A portion of the pedestal or a portion of the optical component is inserted in the first through-hole.
Abstract:
In a lighting device provided with a light source module including a plurality of light sources, insufficiency of luminous intensity, illuminance unevenness, and the like due to a low-light light source are compensated for. The lighting device includes the light source module which is composed of the plurality of light sources in a matrix and mounted on a board. A drive circuit individually supplies power to the light sources. A processor controls a lighting status of each of the light sources via the drive circuit. The processor determines a low-light light source that is lower in luminous intensity than at least one light source among the plurality of light sources, and causes at least one light source adjacent to the low-light light source to emit light with a higher luminous intensity than the at least one other light source.
Abstract:
A light source module is provided that includes a primary wiring substrate and a light source array having a plurality of light sources mounted on a surface of the primary wiring substrate in a matrix. The light source module includes a heat radiation pad, provided at a peripheral region of the primary wiring substrate, and one or a plurality of heat transfer paths having a higher heat conductivity than a base substrate that is a parent material of the primary wiring substrate and connecting the plurality of light sources constituting the light source array and the heat radiation pad. At least one of the plurality of light sources, which are arranged at a row-directional central portion of the light source array, is connected with the heat radiation pad by the heat transfer path including a first linear portion.
Abstract:
A light-emitting apparatus includes: a substrate; an LED chip disposed on the substrate; and a sealing member that contains a yellow phosphor and a cerium oxide, and seals the LED chip. An amount of the cerium oxide contained in the sealing member depends on a peak wavelength of a light emission spectrum of the LED chip, and when the peak wavelength of the light emission, spectrum of the LED chip is 470 nm or less, the amount of the cerium oxide contained in the sealing member is 0.100 wt % or less.
Abstract:
A moving-body light-emitting device for a vehicle includes: a light source including a light-emitting element; a substrate on which the light source is provided; a first lens that covers the light-emitting element and includes a curved surface that transmits light emitted from the light-emitting element, the curved surface including a first curved surface and a second curved surface; and a reflective surface that covers the first curved surface of the first lens and reflects the light transmitted through the first lens. The second curved surface of the first lens is not covered with the reflective surface, and transmits the light reflected by the reflective surface.
Abstract:
A light source module is provided. According to an exemplary embodiment, the light source module includes a base material. A plurality of light sources is on a surface of the substrate in a matrix. The plurality of light sources is individually controlled to be lit. A first electric supply wire supplies electricity to each of the plurality of light sources. A plurality of second electric supply wires supplies electricity to the plurality of light sources respectively. A plurality of protection diodes is electrically connected with the first electric supply wire and the plurality of second electric supply wires. The plurality of protection diodes is in the substrate.