Abstract:
Encapsulated viable cells for implanting are prepared having cells dispersed in a particulate, essentially non cross-linked chitosan core matrix that is enclosed within a semipermeable membrane. The cells are entrapped between chitosan particles of the core matrix and there is essentially no interfacial cross-linking between the core matrix and the membrane. The core matrix provides a physical support for the cells such that the cells are evenly dispersed throughout the core matrix so as to allow their maintenance, growth, proliferation and differentiation. The encapsulated cells may be prepared by mixing viable cells with a solution of chitosan, encapsulating the resultant mixture in a thermoplastic semipermeable membrane, and causing the chitosan to precipitate such as by changing the pH to form the core matrix. Alternatively, the chitosan in solution is precipitated to form the core matrix containing cells, and the core matrix is encapsulated in a semipermeable membrane. Cells encapsulated include neurosecretory cell lines, .beta.-cell-derived cells lines, fibroblasts, myocytes and glial cells.
Abstract:
Vehicles containing cells for implanting in the tissue of an individual are prepared having cells dispersed in a particulate, essentially non cross-linked chitosan core matrix that is enclosed within a semipermeable membrane. The cells are entrapped between chitosan particles of the core matrix and there is essentially no interfacial cross-linking between the core matrix and the membrane. The core matrix provides a physical support for viable cells within the vehicle such that the cells are evenly dispersed throughout the core matrix so as to allow their maintenance, growth, proliferation and differentiation. The vehicle can be prepared by mixing viable cells with a solution of chitosan, encapsulating the resultant mixture in a semipermeable membrane and causing the chitosan to precipitate such as by changing the pH to form the core matrix. Alternatively, the chitosan is precipitated to form the core matrix containing cells and then the core matrix is encapsulated in a semipermeable membrane. Cells within the core matrix may be neurosecretory cell lines, .beta.-cell-derived cells lines, fibroblasts, myocytes and glial cells.
Abstract:
The invention relates to the use of an IL-6R/IL-6 chimera, a mutein, isoform, fused protein, functional derivative, active fraction or circularly permutated derivative or a salt thereof, for the manufacture of a medicament for the treatment and/or prevention of Huntington's disease.
Abstract:
Disclosed and claimed are methods for treating or preventing neurodegenerative diseases, conditions or maladies or symptoms or physiology associated therewith, such as treating or preventing Parkinson's disease or symptoms or physiology associated therewith such as motor deficits or nigrostriatal degeneration; or, for inducing nigrostriatal regeneration. Advantageously, the methods involve administering a lentiviral vector that expresses GDNF, such as human GDNF, or a variant, homolog, analog or derivative thereof.
Abstract:
An immunoisolatory vehicle for the implantation into an individual of cells which produce a needed product or provide a needed metabolic function. The vehicle is comprised of a core region containing isolated cells and materials sufficient to maintain the cells, and a permselective, biocompatible, peripheral region free of the isolated cells, which immunoisolates the core yet provides for the delivery of the secreted product or metabolic function to the individual.
Abstract:
Refillable immunoisolatory neurological therapy devices for local and controlled delivery of a biologically active factor to the brain of a patient. The devices include a cell chamber adapted for infusion with nsecretory cells and having at least one semipermeable or permselective surface across which biologically active factors secreted by the cells can be delivered to the brain. The devices also include means for introducing secretory cells into the cell chamber, and means for renewing the cells or cell medium.
Abstract:
Methods and systems are disclosed for encapsulating viable cells which produce biologically-active factors. The cells are encapsulated within a semipermeable, polymeric membrane by co-extruding an aqueous cell suspension and a polymeric solution through a common port to form a tubular extrudate having a polymeric outer coating which encapsulates the cell suspension. For example, the cell suspension and the polymeric solution can be extruded through a common extrusion port having at least two concentric bores, such that the cell suspension is extruded through the inner bore and the polymeric solution is extruded through the outer bore. The polymeric solution coagulates to form an outer coating. As the outer coating is formed, the ends of the tubular extrudate can be sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links.
Abstract:
Methods and systems are disclosed for encapsulating viable cells which produce biologically-active factors. The cells are encapsulated within a semipermeable, polymeric membrane by co-extruding an aqueous cell suspension and a polymeric solution through a common port to form a tubular extrudate having a polymeric outer coating which encapsulates the cell suspension. For example, the cell suspension and the polymeric solution can be extruded through a common extrusion port having at least two concentric bores, such that the cell suspension is extruded through the inner bore and the polymeric solution is extruded through the outer bore. The polymeric solution coagulates to form an outer coating. As the outer coating is formed, the ends of the tubular extrudate can be sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links.
Abstract:
Devices and methods for transmitting neural signals from a proximal stump of a transected nerve to a prosthetic apparatus are disclosed employing microelectrodes, preferably conductive fiber networks, capable of sensing electrical signals from a nerve and transmitting such signals to a prosthetic apparatus; and a semipermeable guidance channel disposed about the microelectrodes. The channels include an opening adapted to receive the proximal stump of a transected nerve, such that the channel promotes the growth of the stump and the formation of an electrical connection between the transected nerve and the microelectrode.
Abstract:
A method of producing a microencapsulated pharmaceutical formulation is disclosed comprising causing a dye to be attached to the surface of pharmaceutical particles or particle clusters and applying a source of radiant energy to the dye in the presence of a liquid polymeric or polymerisable material so as to cause the material to cross-link, producing a conformal layer of cross-linked polymer on the particulate surfaces. Preferably, the polymer provides an immuno-protective layer around the particles, while allowing therapeutic components to exit the microcapsules. Microencapsulated pharmaceutical formulations and their medical use are also disclosed, especially for the treatment of diabetes by encapsulating insulin secreting cells.