摘要:
A process for converting methanol to light olefins is disclosed and claimed. The catalyst is a metalloaluminophosphate molecular sieve having the empirical formula (ExAlyPz)O2 where EL is a metal such as silicon or magnesium and “x”, “y” and “z” are the mole fractions of EL, Al and P respectively and specifically where “x” has a value of about 0.02 to about 0.08. A preferred molecular sieve is one which has predominantly a plate crystal morphology in which the average smallest crystal dimension is at least 0.1 microns and has an aspect ratio of no greater than 5. The process provides greater selectivity to ethylene and propylene versus C4+ byproducts.
摘要:
A process is disclosed for enhancing the production of light olefins with a catalytic reaction zone containing small pore zeolitic and non-zeolitic catalysts which can significantly improve the yield of ethylene and propylene in a process for the conversion of light olefins having four carbon atoms per molecule and heavier. Specifically, a C.sub.4 olefin stream from an ethylene production complex is converted in a reaction zone over a non-zeolitic catalyst at effective conditions to produce a product mixture containing ethylene and propylene. Ethylene and propylene are separated from the product mixture and recovered. A portion of the remaining heavy hydrocarbons and paraffins may be recycled to the reaction zone for further conversion, or oligomerized to produce valuable downstream products. The additional step of removing iso-olefins from the recycle stream provided significant advantages. The process of the present invention may be applied in commercial ethylene plants, in petroleum refining catalytic cracking operations, and in processes for the conversion of oxygenates such as methanol-to-olefins to enhance the production of ethylene and propylene.
摘要:
The process disclosed herein is a process for producing phenyl-alkanes by alkylation of an aryl compound with an olefinic compound and which uses a mordenite catalyst and a silica-alumina catalyst. The selectivity of the process to 2-phenyl-alkanes can be varied over a wide range.
摘要:
The present invention relates to a process for the production of light olefins comprising olefins having from 2 to 4 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal alumninophosphate catalyst to produce a light olefin stream. The light olefin stream is fractionated and a portion of the products are metathesized to enhance the yield of the ethylene, propylene, and/or butylene products. Propylene can be metathesized to produce more ethylene, or a combination of ethylene and butene can be metathesized to produce more propylene. This combination of light olefin production and metathesis, or disproportionation provides flexibility to overcome the equilibrium limitations of the metal aluminophosphate catalyst in the oxygenate conversion zone. In addition, the invention provides the advantage of extended catalyst life and greater catalyst stability in the oxygenate conversion zone.
摘要:
Enhanced recovery of crude oil from an oil well is provided by in-situ cracking of an oxygenated organic compound to form hydrogen. The crude oil is then hydrogenated and hydrogenation reaction products and crude oil are recovered from the oil well.
摘要:
The invention provides a method to avoid catalyst damage and achieve longer catalyst life by selecting appropriate materials for reactor spacers, liners, catalyst binders, and supports, in particular, by not using crystalline silica-containing and high phosphorus-containing materials, if the presence of even small amount of steam is anticipated. In addition, alkali metals and alkaline earth metals are avoided due to potential damage to the catalyst.
摘要:
The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
摘要:
The invention provides a method to avoid catalyst damage and achieve longer catalyst life by selecting appropriate materials for reactor spacers, liners, catalyst binders, and supports, in particular, by not using crystalline silica-containing and high phosphorus-containing materials, if the presence of even small amount of steam is anticipated. In addition, alkali metals and alkaline earth metals are avoided due to potential damage to the catalyst.
摘要:
A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
摘要:
Hydrothermal treatment of silicoaluminophosphate molecular sieves at temperatures in excess of about 700.degree. C. for periods sufficient to destroy a large proportion of their acid sites while retaining at least 80 percent of their crystallinity is found to result in a catalyst for converting methanol to lower olefins having increased catalyst life, increased selectivity for C.sub.2 -C.sub.3 olefins and decreased selectivity for paraffin production than the untreated SAPO-n starting composition.