摘要:
A method for forming alloy deposits at selected areas on a receiving substrate includes the steps of: providing an alloy carrier including at least a first decal including a first plurality of openings and a second decal including a second plurality of openings, the first and second decals being arranged such that each of the first plurality of openings is in alignment with a corresponding one of the second plurality of openings; filling the first and second plurality of openings with molten alloy; cooling the molten alloy to thereby form at least first and second plugs, the first plug having a first surface and a second surface substantially parallel to one another, the second plug having a third surface and a fourth surface substantially parallel to one another; removing at least one of the first and second decals to at least partially expose the first and second plugs; aligning the alloy carrier with the receiving substrate so that the first and second plugs correspond to the selected areas on the receiving substrate; and transferring the first plug to a first of the selected areas and the second plug to a second of the selected areas.
摘要:
A method for forming alloy deposits at selected areas on a receiving substrate includes the steps of: providing an alloy carrier including at least a first decal including a first plurality of openings and a second decal including a second plurality of openings, the first and second decals being arranged such that each of the first plurality of openings is in alignment with a corresponding one of the second plurality of openings; filling the first and second plurality of openings with molten alloy; cooling the molten alloy to thereby form at least first and second plugs, the first plug having a first surface and a second surface substantially parallel to one another, the second plug having a third surface and a fourth surface substantially parallel to one another; removing at least one of the first and second decals to at least partially expose the first and second plugs; aligning the alloy carrier with the receiving substrate so that the first and second plugs correspond to the selected areas on the receiving substrate; and transferring the first plug to a first of the selected areas and the second plug to a second of the selected areas.
摘要:
A method for forming alloy deposits at selected areas on a receiving substrate includes the steps of: providing an alloy carrier including at least a first decal including a first plurality of openings and a second decal including a second plurality of openings, the first and second decals being arranged such that each of the first plurality of openings is in alignment with a corresponding one of the second plurality of openings; filling the first and second plurality of openings with molten alloy; cooling the molten alloy to thereby form at least first and second plugs, the first plug having a first surface and a second surface substantially parallel to one another, the second plug having a third surface and a fourth surface substantially parallel to one another; removing at least one of the first and second decals to at least partially expose the first and second plugs; aligning the alloy carrier with the receiving substrate so that the first and second plugs correspond to the selected areas on the receiving substrate; and transferring the first plug to a first of the selected areas and the second plug to a second of the selected areas.
摘要:
A method for forming alloy deposits at selected areas on a receiving substrate includes the steps of: providing an alloy carrier including at least a first decal including a first plurality of openings and a second decal including a second plurality of openings, the first and second decals being arranged such that each of the first plurality of openings is in alignment with a corresponding one of the second plurality of openings; filling the first and second plurality of openings with molten alloy; cooling the molten alloy to thereby form at least first and second plugs, the first plug having a first surface and a second surface substantially parallel to one another, the second plug having a third surface and a fourth surface substantially parallel to one another; removing at least one of the first and second decals to at least partially expose the first and second plugs; aligning the alloy carrier with the receiving substrate so that the first and second plugs correspond to the selected areas on the receiving substrate; and transferring the first plug to a first of the selected areas and the second plug to a second of the selected areas.
摘要:
A process and tools for forming and/or releasing metal preforms, metal shapes and solder balls is described incorporating flexible molds or sheets, injection molded metal such as solder and in the case of solder balls, a liquid or gaseous environment to reduce or remove metal oxides prior to or during metal (solder) reflow to increase surface tension to form spherical or substantially spherical solder-balls.
摘要:
Structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
摘要:
The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer The space transformer can have an array of pins which are on the opposite surface of the space transformer opposite to that on which the elongated conductors are bonded. The pins are inserted into a socket on a second space transformer, such as a printed circuit board to form a probe assembly. Alternatively, an interposer electrical connector can be disposed between the first and second space transformer.
摘要:
The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer The space transformer can have an array of pins which are on the opposite surface of the space transformer opposite to that on which the elongated conductors are bonded. The pins are inserted into a socket on a second space transformer, such as a printed circuit board to form a probe assembly. Alternatively, an interposer electrical connector can be disposed between the first and second space transformer.
摘要:
The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer The space transformer can have an array of pins which are on the opposite surface of the space transformer opposite to that on which the elongated conductors are bonded. The pins are inserted into a socket on a second space transformer, such as a printed circuit board to form a probe assembly. Alternatively, an interposer electrical connector can be disposed between the first and second space transformer.
摘要:
The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer The space transformer can have an array of pins which are on the opposite surface of the space transformer opposite to that on which the elongated conductors are bonded. The pins are inserted into a socket on a second space transformer, such as a printed circuit board to form a probe assembly. Alternatively, an interposer electrical connector can be disposed between the first and second space transformer.