Abstract:
A memory and a method for operating the memory are provided. The memory includes a bitline and at least one memory cell coupled to the bitline. A bitline precharge circuit is configured to precharge the bitline for a memory access and to deactivate to float the bitline in a standby state. A reference circuit is configured to charge a load circuit to a voltage in the standby state. In one example, the load circuit includes a dummy bitline having a substantially same or greater electrical characteristic of the bitline. The reference circuit includes a dummy bitline precharge circuit configured to charge the dummy bitline to the voltage in the standby state.
Abstract:
A memory is provided that is configured to practice both a conventional normal read operation and also a burst mode read operation. During the normal read operation, the memory pre-charges the bit lines in a group of multiplexed columns. Each column has a sense amplifier that latches a bit decision for the column during the normal read operation. If a subsequent read operation addresses the same group of multiplexed columns, the memory invokes the burst-mode read operation during which the bit lines are not pre-charged.
Abstract:
Disclosed are various apparatuses and methods for a memory with a multiple word line design. A memory timing circuit may include a dummy word line including a first portion and a second portion and further including capacitative loading that is lumped in the second portion of the dummy word line, a first transistor connected to the first portion of the dummy word line and configured to charge the dummy word line, and a second transistor connected to the second portion of the dummy word line and configured to discharge the dummy word line. A method may include charging a dummy word line using a first transistor, and discharging the dummy word line using a second transistor, wherein the dummy word line includes a first portion and a second portion and further includes capacitative loading that is lumped in the second portion of the dummy word line.
Abstract:
An apparatus including a memory subsystem. The memory subsystem includes a data input and a clock input. The apparatus also includes a variable delay circuit coupled to one of the data input or the clock input. Additionally, the apparatus includes a controller coupled to the variable delay circuit. The controller is configured to dynamically control the delay of the variable delay circuit. The controller may adjust the delay of the variable delay circuit based on at least one of timing data for a memory subsystem design of the memory subsystem, timing data for the memory subsystem, a voltage applied to the memory subsystem, or a temperature of the memory subsystem.
Abstract:
A method of operating an apparatus in a functional mode and an ATPG scan mode and an apparatus for use in a functional mode and an ATPG scan mode are provided. The apparatus includes a set of latches including a first latch and a second latch. The first latch is operated as a master latch and the second latch is operated as a master latch in the functional mode. The first latch is operated as a master latch of a flip-flop and the second latch is operated as a slave latch of the flip-flop in the ATPG scan mode. In one configuration, the apparatus includes a plurality of latches including at least the first and second latches, an output of each of the latches is coupled to a digital circuit, the apparatus includes a plurality of functional inputs, and each of the functional inputs is input to the digital circuit.
Abstract:
An integrated circuit includes one or more bit cells, a word line coupled to the one or more bit cells, and a dummy word line arranged with the word line to have a capacitance therebetween. The capacitance provides a voltage boost or reduction of the word line to assist read and write operations.
Abstract:
Disclosed are various apparatuses and methods for memory access time tracking in dual-rail systems. An apparatus may include a memory coupled to a first voltage rail and having a data output, a data circuit coupled to a second voltage rail and configured to receive the data output from the memory, and a timing circuit configured to adjust an access time of the memory based on a second voltage rail level. A method may include determining a voltage rail level of a data circuit, adjusting the access time of the memory based on the voltage rail level of the data circuit, outputting data from the memory, and receiving the output data by the data circuit.