Abstract:
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
Abstract:
Embodiments of an integrated circuit (IC) comprising frequency change detection circuitry are described. Some embodiments include first circuitry to generate a second clock signal based on a first clock signal, wherein the first clock signal has a first clock frequency, and wherein the second clock signal has a second clock frequency that is an integral multiple of the first clock frequency. The embodiments further include second circuitry to obtain samples by oversampling the first clock signal using the second clock signal. Additionally, the embodiments include third circuitry to detect a change in the first clock frequency based on the samples.
Abstract:
The common-mode input voltage of a common-gate input amplifier receiving a differential signal is set in an open-loop manner by basing the bias current and/or source load impedances of the common-gate amplifier on a transmitter bias current and driving impedance. The common-mode input voltage of a common-gate input amplifier receiving a differential signal may be set in a closed-loop manner using a feedback loop having a captured target voltage compared to the common-mode input voltage at a node of the amplifier. The common-mode input voltage of a common-gate input amplifier receiving a differential signal may be set in a continuous time closed loop manner by sending a reference current through resistances that are multiples of a resistance used to generate the reference current.
Abstract:
A signal on a transmitter tracks noise on a ground node in a manner decoupled from a positive node of a power supply. The signal is transmitted from the transmitter to the receiver. A reference voltage is generated on the receiver to track noise on a ground node in the receiver. Consequently, the received signal and the reference voltage have substantially the same noise characteristics, which become common mode noise that can be cancelled out when these two signals are compared against each other. In a further embodiment, the reference voltage is compared against a predetermined calibration pattern. An error signal is generated based on a difference between the sampler output and the predetermined calibration pattern. The error signal is then used to adjust the reference voltage so that the DC level of the reference voltage is positioned substantially in the middle of the received signal.
Abstract:
A data buffer with a strobe-based primary interface and a strobe-less secondary interface used on a memory module is described. One memory module includes an address buffer, the data buffer and multiple dynamic random-access memory (DRAM) devices. The address buffer provides a timing reference to the data buffer and to the DRAM devices for one or more transactions between the data buffer and the DRAM devices via the strobe-less secondary interface.
Abstract:
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
Abstract:
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
Abstract:
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
Abstract:
Embodiments of an integrated circuit (IC) comprising frequency change detection circuitry are described. Some embodiments include first circuitry to generate a second clock signal based on a first clock signal, wherein the first clock signal has a first clock frequency, and wherein the second clock signal has a second clock frequency that is an integral multiple of the first clock frequency. The embodiments further include second circuitry to obtain samples by oversampling the first clock signal using the second clock signal. Additionally, the embodiments include third circuitry to detect a change in the first clock frequency based on the samples.
Abstract:
Embodiments of an integrated circuit (IC) comprising frequency change detection circuitry are described. Some embodiments include first circuitry to generate a second clock signal based on a first clock signal, wherein the first clock signal has a first clock frequency, and wherein the second clock signal has a second clock frequency that is an integral multiple of the first clock frequency. The embodiments further include second circuitry to obtain samples by oversampling the first clock signal using the second clock signal. Additionally, the embodiments include third circuitry to detect a change in the first clock frequency based on the samples.