Abstract:
In a light-emitting element (1), a light-emitting layer (4), a second conductivity type semiconductor layer (5), a transparent electrode layer (6), a reflecting electrode layer (7) and an insulating layer (8) are stacked in this order on a first conductivity type semiconductor layer (3), while a first electrode layer (10) and a second electrode layer (12) are stacked on the insulating layer (8) in an isolated state. The light-emitting element (1) includes a plurality of insulating tube layers (9), discretely arranged in plan view, passing through the reflecting electrode layer (7), the transparent electrode layer (6), the second conductivity type semiconductor layer (5) and the light-emitting layer (4) continuously from the insulating layer (8) and reaching the first conductivity type semiconductor layer (3), first contacts (11), continuous from the first electrode layer (10), connected to the first conductivity type semiconductor layer (3) through the insulating layer (8) and the insulating tube layers (9), and second contacts (13), continuous from the second electrode layer (12), passing through the insulating layer (8) to be connected to the reflecting electrode layer (7).
Abstract:
A semiconductor light emitting device includes a substrate having a first major surface and a second major surface, a semiconductor layer that includes a first semiconductor layer of a first conductive type formed on the first major surface of the substrate, a light emitting layer formed on the first semiconductor layer and a second semiconductor layer of a second conductive type formed on the light emitting layer, and a mesa structure formed in the semiconductor layer by selectively notching the first semiconductor layer, the light emitting layer and the second semiconductor layer so as to expose the first semiconductor layer, and a ratio of a luminescent area of the light emitting layer with respect to an area of the first major surface of the substrate being set to equal to or smaller than 0.25.
Abstract:
In a light-emitting element (1), a light-emitting layer (4), a second conductivity type semiconductor layer (5), a transparent electrode layer (6), a reflecting electrode layer (7) and an insulating layer (8) are stacked in this order on a first conductivity type semiconductor layer (3), while a first electrode layer (10) and a second electrode layer (12) are stacked on the insulating layer (8) in an isolated state. The light-emitting element (1) includes a plurality of insulating tube layers (9), discretely arranged in plan view, passing through the reflecting electrode layer (7), the transparent electrode layer (6), the second conductivity type semiconductor layer (5) and the light-emitting layer (4) continuously from the insulating layer (8) and reaching the first conductivity type semiconductor layer (3), first contacts (11), continuous from the first electrode layer (10), connected to the first conductivity type semiconductor layer (3) through the insulating layer (8) and the insulating tube layers (9), and second contacts (13), continuous from the second electrode layer (12), passing through the insulating layer (8) to be connected to the reflecting electrode layer (7).
Abstract:
A light emitting device includes a light emitting layer, a substrate that is transparent to an emission wavelength of the light emitting layer and positioned to receive an emission wavelength from the light emitting layer, a convex pattern including a collection of a plurality of convex portions discretely arranged on a front surface of the substrate with a first pitch, an n type nitride semiconductor layer located on the front surface of the substrate to cover the convex pattern and a p type nitride semiconductor layer located on the light emitting layer. The light emitting layer is located on the n type semiconductor layer. Each of the convex portions includes a sub convex pattern comprising a plurality of fine convex portions discretely formed at the top of the convex portion with a second pitch smaller than the first pitch, and a base supporting the sub convex pattern.
Abstract:
A light emitting element unit according to the present invention includes a semiconductor light emitting element that has a surface, a back surface, and a side surface, where the surface or the back surface is a light extracting surface from which light generated inside is emitted, a submount which has a bottom wall and a side wall, has a recess portion defined by the bottom wall and the side wall, and supports the semiconductor light emitting element by the bottom wall in a position in which the light extracting surface is directed upward at the recess portion, and has an inclined surface on the side wall, inclined at a predetermined angle with respect to the bottom wall so as to face the side surface of the semiconductor light emitting element, and a light reflecting film formed on the inclined surface of the submount.
Abstract:
A light emitting device includes a light emitting layer, a substrate that is transparent to an emission wavelength of the light emitting layer and positioned to receive an emission wavelength from the light emitting layer, a convex pattern including a collection of a plurality of convex portions discretely arranged on a front surface of the substrate with a first pitch, an n type nitride semiconductor layer located on the front surface of the substrate to cover the convex pattern and a p type nitride semiconductor layer located on the light emitting layer. The light emitting layer is located on the n type semiconductor layer. Each of the convex portions includes a sub convex pattern comprising a plurality of fine convex portions discretely formed at the top of the convex portion with a second pitch smaller than the first pitch, and a base supporting the sub convex pattern.
Abstract:
A semiconductor light emitting device includes a substrate made of resin, a first wiring and a second wiring formed on the substrate, a light emitting element disposed on the substrate and electrically connected to the first wiring and the second wiring, and a transparent sealing resin configured to seal the light emitting element. The substrate contains an acrylic resin, and the sealing resin contains silicon.
Abstract:
A light emitting device includes a light emitting layer, a substrate that is transparent to an emission wavelength of the light emitting layer and positioned to receive an emission wavelength from the light emitting layer, a convex pattern including a collection of a plurality of convex portions discretely arranged on a front surface of the substrate with a first pitch, an n type nitride semiconductor layer located on the front surface of the substrate to cover the convex pattern and a p type nitride semiconductor layer located on the light emitting layer. The light emitting layer is located on the n type semiconductor layer. Each of the convex portions includes a sub convex pattern comprising a plurality of fine convex portions discretely formed at the top of the convex portion with a second pitch smaller than the first pitch, and a base supporting the sub convex pattern.
Abstract:
In a light-emitting element 1, a light-emitting layer 4, a second conductivity type semiconductor layer 5, a transparent electrode layer 6, a reflecting electrode layer 7 and an insulating layer 8 are stacked in this order on a first conductivity type semiconductor layer 3, while a first electrode layer 10 and a second electrode layer 12 are stacked on the insulating layer 8 in an isolated state. The light-emitting element 1 includes a plurality of insulating tube layers 9, discretely arranged in plan view, passing through the reflecting electrode layer 7, the transparent electrode layer 6, the second conductivity type semiconductor layer 5 and the light-emitting layer 4 continuously from the insulating layer 8 and reaching the first conductivity type semiconductor layer 3, first contacts 11, continuous from the first electrode layer 10, connected to the first conductivity type semiconductor layer 3 through the insulating layer 8 and the insulating tube layers 9, and second contacts 13, continuous from the second electrode layer 12, passing through the insulating layer 8 to be connected to the reflecting electrode layer 7.
Abstract:
A semiconductor light emitting device includes a substrate made of resin, a first wiring and a second wiring formed on the substrate, a light emitting element disposed on the substrate and electrically connected to the first wiring and the second wiring, and a transparent sealing resin configured to seal the light emitting element. The substrate contains an acrylic resin, and the sealing resin contains silicone.