摘要:
A static random-access memory circuit includes at least one access device including source and drain sections for a pass region, at least one pull-up device and at least one pull-down device including source-and-drain sections for a pull-down region. The static random-access memory circuit is configured with external resistivity (Rext) for the pull-down region to be lower than Rext for the pass region. Processes of achieving the static random-access memory circuit include source-and-drain epitaxy.
摘要:
An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
摘要:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
摘要:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
摘要:
Semiconductor devices having germanium active layers with underlying diffusion barrier layers are described. For example, a semiconductor device includes a gate electrode stack disposed above a substrate. A germanium active layer is disposed above the substrate, underneath the gate electrode stack. A diffusion barrier layer is disposed above the substrate, below the germanium active layer. A junction leakage suppression layer is disposed above the substrate, below the diffusion barrier layer. Source and drain regions are disposed above the junction leakage suppression layer, on either side of the gate electrode stack.
摘要:
A static random-access memory circuit includes at least one access device including source and drain sections for a pass region, at least one pull-up device and at least one pull-down device including source-and-drain sections for a pull-down region. The static random-access memory circuit is configured with external resistivity (Rext) for the pull-down region to be lower than Rext for the pass region. Processes of achieving the static random-access memory circuit include source-and-drain epitaxy.
摘要:
A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. Channel nanowires having a third lattice are formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. The channel nanowires include a bottom-most channel nanowire and a bottom gate isolation is formed on the top surface of the substrate under the bottom-most channel nanowire. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding each channel nanowire.
摘要:
A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. Channel nanowires having a third lattice are formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. The channel nanowires include a bottom-most channel nanowire and a bottom gate isolation is formed on the top surface of the substrate under the bottom-most channel nanowire. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding each channel nanowire.
摘要:
An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
摘要:
A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.