摘要:
The invention relates to an aqueous suspension of particles, said particles comprising an organic active ingredient. A controlled release of the ingredient occurs. The invention is especially suitable for the controlled release of organic agrochemical active ingredients useful in crop sciences, such as pesticides.
摘要:
The method comprises: causing a reference fluid (F2) having known rheological characteristics, and an unknown fluid (F1) to flow in parallel in a microchannel (126); identifying at least one data item representative of the interface (I) between these fluids in the parallel flow, and in particular the position of said interface; and determining the rheological characteristics of the unknown fluid, from the or each identified data item.
摘要:
Fluid flow devices include a small plate (2), at least one flow channel (20) formed into this small plate, at least one storage channel (221-226) extending from this connection channel, and a set of valves (V1-V6), each of which is suitable for allowing or stopping the flow of fluid in a corresponding storage channel.
摘要:
The invention relates to a hydraulic fracturing fluid comprising an aqueous liquid, and a block copolymer containing at least one water-soluble block and one hydrophobic block and being particularly suited for use in high temperature ranges, greater than 180° C.
摘要:
The invention relates to water-soluble block copolymers comprising at least one block of hydrophobic nature and at least one block of hydrophilic nature, the block of hydrophobic nature exhibiting hydrophilic units in an amount of between 33% and 99% by weight with respect to the total weight of the units of the hydrophobic block. These copolymers are preferably diblocks or triblocks and are prepared by a polymerization process referred to as a living or controlled. Control of their hydrophilic-lipophilic balance makes it possible to adjust their solubility in water and their self-association properties. These copolymers can be used in particular as adhesion agents or wetting agents.
摘要:
Fluid flow devices include a small plate (2), at least one flow channel (20) formed into this small plate, at least one storage channel (221-226) extending from this connection channel, and a set of valves (V1-V6), each of which is suitable for allowing or stopping the flow of fluid in a corresponding storage channel.
摘要:
Microfluidic devices having a membrane allowing evaporation are useful for conducting a measurement or observation of compounds introduced therein.
摘要:
The method comprises: causing a reference fluid (F2) having known rheological characteristics, and an unknown fluid (F1) to flow in parallel in a microchannel (126); identifying at least one data item representative of the interface (I) between these fluids in the parallel flow, and in particular the position of said interface; and determining the rheological characteristics of the unknown fluid, from the or each identified data item.
摘要:
The invention relates to a formulation comprising an ionic compound and a polyionic polymer. The invention more specifically relates to an improved formulation thereof, further comprising a copolymer. The improved formulation avoids phase-separation of colloidal particles comprising the ionic compound and the polyionic polymer. The formulation comprises a copolymer comprising two moieties A and B, wherein moiety A is polyionic in the pH conditions of the formulation, and moiety B is neutral in the pH conditions of the formulation.
摘要:
A subject-matter of the present invention is a surface-active block copolymer comprising at least one hydrophilic block and at least one hydrophobic block which is prepared by a “living” or “controlled” preparation process, the said copolymer exhibiting a number-average molecular mass of between 1 000 and 50 000, preferably between 2 000 and 20 000, more preferably still between 4 000 and 16 000, a glass transition temperature of the hydrophobic block of less than 30° C., preferably of less than 25° C., and greater than −100° C., and a surface tension of less than 60 millinewtons per metre (mN/m), preferably of less than 50 mN/m, measured at a concentration in demineralized water of less than or equal to 10−4 mol/l, and the transfer agent optionally having been rendered inert with respect to the said radical polymerization. The copolymers obtained can be used in particular in detergency or in paints, adhesives and building materials.