摘要:
Disclosed are embodiments of an integrated circuit chip designed for reliability at low ambient temperatures. The chip substrate can be divided into zones, including at least one temperature-sensitive zone (TSZ) that contains one or more temperature-sensitive circuits. Temperature sensor(s) can be positioned in the semiconductor substrate adjacent to the TSZ. Thermal radiator(s) can be embedded in a metal wiring layer and aligned above the TSZ. The temperature sensor(s) can be operatively connected to the thermal radiator(s) and can trigger operation of the thermal radiator(s) when the temperature in the TSZ is below a predetermined threshold temperature. Additionally, an on-chip power control system can be operatively connected to the thermal radiator(s) so that operation of the thermal radiator(s) is only triggered when a circuit within the TSZ is about to be powered up. Also disclosed are associated embodiments of a system and method for designing such an integrated circuit chip.
摘要:
Disclosed are embodiments of an integrated circuit chip designed for reliability at low ambient temperatures. The chip substrate can be divided into zones, including at least one temperature-sensitive zone (TSZ) that contains one or more temperature-sensitive circuits. Temperature sensor(s) can be positioned in the semiconductor substrate adjacent to the TSZ. Thermal radiator(s) can be embedded in a metal wiring layer and aligned above the TSZ. The temperature sensor(s) can be operatively connected to the thermal radiator(s) and can trigger operation of the thermal radiator(s) when the temperature in the TSZ is below a predetermined threshold temperature. Additionally, an on-chip power control system can be operatively connected to the thermal radiator(s) so that operation of the thermal radiator(s) is only triggered when a circuit within the TSZ is about to be powered up. Also disclosed are associated embodiments of a system and method for designing such an integrated circuit chip.
摘要:
An apparatus, system, and method are disclosed for connecting an integrated circuit device to a substrate. A plurality of standard diameter pillars and three or more increased diameter pillars are disposed on an integrated circuit device. The increased diameter pillars have a diameter that is greater than the standard diameter pillars and a height that is similar to the standard diameter pillars. The standard diameter pillars and the increased diameter pillars form a pattern on the integrated circuit device that corresponds to contact pads on a substrate opposite the integrated circuit device. A first group of solder bumps is disposed between the standard diameter pillars and the contact pads. A second group of solder bumps is disposed between the increased diameter pillars and the contact pads. The second group of solder bumps has pre-connection heights that are greater than pre-connection heights of the first group of solder bumps.
摘要:
Solutions for determining intra-die wirebond pad placement locations in an integrated circuit (IC) die are disclosed. In one embodiment, a method includes generating a dividing band in the IC die, the dividing band dividing the IC die into a first region and a second region; determining a voltage (IR) drop across the first region and the second region; comparing the IR drops across the regions; and in response to the IR drops being substantially unequal, moving the dividing band, determining new IR drops across the regions, and comparing the new IR drops until the IR drops are substantially equal. The dividing band may provide desired locations for intra-die wirebond pads.
摘要:
Solutions for determining intra-die wirebond pad placement locations in an integrated circuit (IC) die are disclosed. In one embodiment, a method includes generating a dividing band in the IC die, the dividing band dividing the IC die into a first region and a second region; determining a voltage (IR) drop across the first region and the second region; comparing the IR drops across the regions; and in response to the IR drops being substantially unequal, moving the dividing band, determining new IR drops across the regions, and comparing the new IR drops until the IR drops are substantially equal. The dividing band may provide desired locations for intra-die wirebond pads.
摘要:
An apparatus, system, and method are disclosed for connecting an integrated circuit device to a substrate. A plurality of standard diameter pillars and three or more increased diameter pillars are disposed on an integrated circuit device. The increased diameter pillars have a diameter that is greater than the standard diameter pillars and a height that is similar to the standard diameter pillars. The standard diameter pillars and the increased diameter pillars form a pattern on the integrated circuit device that corresponds to contact pads on a substrate opposite the integrated circuit device. A first group of solder bumps is disposed between the standard diameter pillars and the contact pads. A second group of solder bumps is disposed between the increased diameter pillars and the contact pads. The second group of solder bumps has pre-connection heights that are greater than pre-connection heights of the first group of solder bumps.