摘要:
An integrated circuit chip includes a window cover over etchant holes in a dielectric layer and over a cavity in the substrate of said integrated circuit chip. The window cover extends at least 400 microns beyond the edge of the cavity. An integrated sensor chip with a sensor cover which extends at least 400 microns beyond the edges of a cavity. A method of forming an integrated sensor chip with a sensor cover which extends at least 400 microns beyond the edge of a cavity.
摘要:
An integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
摘要:
An integrated circuit containing a bipolar transistor including an emitter diffused region with a peak doping density higher than 1·1020 atoms/cm3, and an emitter-base junction less than 40 nanometers deep in a base layer. A process of forming the bipolar transistor, which includes forming an emitter dopant atom layer between a base layer and an emitter layer, followed by a flash or laser anneal step to diffuse dopant atoms from the emitter dopant atom layer into the base layer.
摘要:
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.
摘要:
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.
摘要:
The present invention provides a trench isolation structure, a method of manufacture therefor and a method for manufacturing an integrated circuit including the same. The trench isolation structure (130), in one embodiment, includes a trench located within a substrate (110), the trench having an implanted buffer layer (133) located in the sidewalls thereof. The trench isolation structure (130) further includes a barrier layer (135) located over the implanted buffer layer (133), and fill material (138) located over the barrier layer (135) and substantially filling the trench.
摘要:
An embodiment of the instant invention is a method of fabricating an electronic device over a semiconductor substrate, the method comprising the steps of: forming a doped polycrystalline silicon layer insulatively disposed over the semiconductor substrate; and subjecting the doped polycrystalline silicon layer to a temperature of around 700 to 1100 C. in an oxidizing ambient for a period of around 5 to 120 seconds. Preferably, the oxidizing ambient is comprised of: O2,O3, NO, N2O, H2O, and any combination thereof. The temperature is, preferably, around 950 to 1050 C. (more preferably around 1000 C.). The step of subjecting the doped polycrystalline silicon layer to a temperature of around 700 to 1100 C. in an oxidizing ambient for a period of around 5 to 120 seconds, preferably, forms an oxide layer on the polycrystalline silicon layer, which has a thickness which is, preferably, greater than the thickness of a native oxide layer. More preferably, it has a thickness which is greater than 3 nm (more preferably greater than 2 nm). In an alternative embodiment, the thickness of the oxide layer is less than 20 nm (more preferably, less than 10 nm thick).
摘要:
An integrated circuit comprises a dielectric layer disposed outwardly from a semiconductor substrate, the dielectric layer comprising at least one cavity having sidewalls extending from an outer surface of the dielectric layer inwardly toward the substrate. The integrated circuit further comprises a contaminant resistant barrier disposed outwardly from at least the sidewalls of the cavity in the dielectric layer.
摘要:
A method for controlling the autodoping during epitaxial silicon deposition. First, the substrate (10) is cleaned to remove any native oxide. After being cleaned, the substrate (10) is transferred to the deposition chamber in an inert or vacuum atmosphere to inhibit the growth of a native oxide on the surface of the wafers. A lower temperature (i.e., 500-850.degree. C.) capping layer (14) is deposited to prevent autodoping. Then, the temperature is increased to the desired deposition temperature and the remainder of the epitaxial layer (18) is deposited.
摘要:
A storage node 64 of a capacitor having increased charge storage capacity and a method for forming thereof. A doped polysilicon region 68 is formed. A thin layer of hemispherical grain polysilicon 70 is deposited over the doped polysilicon region 68. The doped polysilicon region 68 and the thin layer of hemispherical grain polysilicon 70 are etched using an etch chemistry that etches the doped polysilicon region 68 faster than the thin layer of hemispherical grain polysilicon 70 to increase the surface area of an upper surface 66 of the storage node 64.