摘要:
Metal seed layers are deposited on a semiconductor substrate having recessed features by a method that involves at least three operations. In this method, a first layer of metal is deposited onto the substrate to cover at least the bottom portions of the recessed features. The first layer of metal is subsequently redistributed to improve sidewall coverage of the recessed features. Next, a second layer of metal is deposited on at least the field region of the substrate and on the bottom portions of the recessed features. The method can be implemented using a PVD apparatus that allows deposition and resputtering operations. This sequence of operations can afford seed layers with improved step coverage. It also leads to decreased formation of voids in interconnects, and to improved resistance characteristics of formed IC devices.
摘要:
Metal seed layers are deposited on a semiconductor substrate having recessed features by a method that involves at least three operations. In this method, a first layer of metal is deposited onto the substrate to cover at least the bottom portions of the recessed features. The first layer of metal is subsequently redistributed to improve sidewall coverage of the recessed features. Next, a second layer of metal is deposited on at least the field region of the substrate and on the bottom portions of the recessed features. The method can be implemented using a PVD apparatus that allows deposition and resputtering operations. This sequence of operations can afford seed layers with improved step coverage. It also leads to decreased formation of voids in interconnects, and to improved resistance characteristics of formed IC devices.
摘要:
Described are methods of making silicon nitride (SiN) materials on substrates. Improved SiN films made by the methods are also included. One aspect relates to depositing chlorine (Cl)-free conformal SiN films. In some embodiments, the SiN films are Cl-free and carbon (C)-free. Another aspect relates to methods of tuning the stress and/or wet etch rate of conformal SiN films. Another aspect relates to low-temperature methods of depositing high quality conformal SiN films. In some embodiments, the methods involve using trisilylamine (TSA) as a silicon-containing precursor.
摘要:
Higher overall etch rate and throughput for atomic layer removal (ALR) is achieved. The reaction is a self-limiting process, thus limiting the total amount of material that may be etched per cycle. By pumping down the process station between reacting operations, the reaction is partially “reset.” A higher overall etch rate is achieved by a multiple exposure with pump down ALR process.
摘要:
Methods of protecting exposed metal damascene interconnect surfaces in a process for making electronic components and the electronic components made according to such methods. An integrated circuit structure having damascene regions with exposed metal surfaces is provided into a closed processing chamber, whereby a first reactant is contacted to the exposed metal surfaces to transform a top portion of the metal layer into a protective self-aligned buffer layer. Reacting molecules of the first reactant with metal atoms of this metal layer forms the protective self-aligned buffer layer entirely within such metal layer. Alternatively, adsorbing surface-active reactant molecules onto the exposed metal surface forms the protective self-aligned buffer layer. A second reactant may be contacted to the protective self-aligned buffer layer to form a self-aligned dielectric cap layer directly over the protective self-aligned buffer layer.
摘要:
Novel gap fill schemes involving depositing both flowable oxide films and high density plasma chemical vapor deposition oxide (HDP oxide) films are provided. According to various embodiments, the flowable oxide films may be used as a sacrificial layer and/or as a material for bottom up gap fill. In certain embodiments, the top surface of the filled gap is an HDP oxide film. The resulting filled gap may be filled only with HDP oxide film or a combination of HDP oxide and flowable oxide films. The methods provide improved top hat reduction and avoid clipping of the structures defining the gaps.
摘要:
A method for the ultraviolet (UV) treatment of carbon-containing low-k dielectric and associated apparatus enables process induced damage repair. The methods of the invention are particularly applicable in the context of damascene processing to recover lost low-k property of a dielectric damaged during processing, either pre-metallization, post-planarization, or both. UV treatments can include an exposure of the subject low-k dielectric to a constrained UV spectral profile and/or chemical silylating agent, or both.
摘要:
A method of improving adhesion between layers in the formation of a semiconductor device and integrated circuit, and the resultant intermediate semiconductor structure, which include a substrate layer with a low k insulating layer thereover. The low k insulating layer includes a treated surface area of adsorbed gaseous particles. This treated surface area is formed by flowing a gas, preferably, silane, disilane, dichlorosilane, germane or combinations thereof, over a surface of the heated low k insulating layer for adsorption of such gaseous particles onto the heated surface, wherein the insulating layer maintains its original thickness. A capping layer is then deposited directly over the insulating layer wherein the treated surface area of the insulating layer significantly improves adhesion between the insulating layers and the capping layers to prevent delamination therebetween during subsequent processing steps of forming the integrated circuit.
摘要:
Methods of protecting exposed metal damascene interconnect surfaces in a process for making electronic components and the electronic components made according to such methods. An integrated circuit structure having damascene regions with exposed metal surfaces is provided into a closed processing chamber, whereby a first reactant is contacted to the exposed metal surfaces to transform a top portion of the metal layer into a protective self-aligned buffer layer. Reacting molecules of the first reactant with metal atoms of this metal layer forms the protective self-aligned buffer layer entirely within such metal layer. Alternatively, adsorbing surface-active reactant molecules onto the exposed metal surface forms the protective self-aligned buffer layer. A second reactant may be contacted to the protective self-aligned buffer layer to form a self-aligned dielectric cap layer directly over the protective self-aligned buffer layer.
摘要:
Chemical vapor deposition processes are employed to fill high aspect ratio (typically at least 3:1), narrow width (typically 1.5 microns or less and even sub 0.15 micron) gaps with significantly reduced incidence of voids or weak spots. This deposition process involves the use of hydrogen as a process gas in the reactive mixture of a plasma containing CVD reactor. The process gas also includes dielectric forming precursor molecules such as silicon and oxygen containing molecules.