摘要:
A laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source and method of operating same is disclosed which may comprise an EUV plasma production chamber having a chamber wall; a drive laser entrance window in the chamber wall; a drive laser entrance enclosure intermediate the entrance window and a plasma initiation site within the chamber and comprising an entrance enclosure distal end opening; at least one aperture plate intermediate the distal opening and the entrance window comprising at least one drive laser passage aperture. The at least one aperture plate may comprise at least two aperture plates comprising a first aperture plate and a second aperture plate defining an aperture plate interim space. The at least one drive laser aperture passage may comprise at least two drive laser aperture passages. The laser passage aperture may define an opening large enough to let the drive laser beam pass without attenuation and small enough to substantially reduce debris passing through the laser passage aperture in the direction of the entrance window.
摘要:
An apparatus and method is described which may comprise a plasma produced extreme ultraviolet (“EUV”) light source multilayer collector which may comprise a plasma formation chamber; a shell within the plasma formation chamber in the form of a collector shape having a focus; the shell having a sufficient size and thermal mass to carry operating heat away from the multilayer reflector and to radiate the heat from the surface of the shell on a side of the shell opposite from the focus. The material of the shell may comprise a material selected from a group which may comprise silicon carbide, silicon, Zerodur or ULE glass, aluminum, beryllium, molybdenum, copper and nickel. The apparatus and method may comprise at least one radiative heater directed at the shell to maintain the steady state temperature of the shell within a selected range of operating temperatures.
摘要:
An aspect of the disclosed subject matter includes a method of reducing the laser absorption of a beam reverser prism consisting of at least one of the following: increasing a first distance between a first incident point and a chamfered corner, wherein the first incident point is on a first reflective surface of the prism and the chamfered corner is formed between the first reflective surface and a second reflective surface of the prism, wherein the chamfered corner has a chamfered surface; increasing a second distance between a second incident point and the chamfered corner, wherein the second incident point is on the second reflective surface of the prism; and increasing a reflectivity of the chamfered surface of the chamfered corner of the prism. A method of determining a prime cut for an optical component is also disclosed. A laser including at least one prime cut optical component is also disclosed.
摘要:
An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device.
摘要:
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
摘要:
A laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprises a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, and a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site.
摘要:
An aspect of the disclosed subject matter includes a method of reducing the laser absorption of a beam reverser prism consisting of at least one of the following: increasing a first distance between a first incident point and a chamfered corner, wherein the first incident point is on a first reflective surface of the prism and the chamfered corner is formed between the first reflective surface and a second reflective surface of the prism, wherein the chamfered corner has a chamfered surface; increasing a second distance between a second incident point and the chamfered corner, wherein the second incident point is on the second reflective surface of the prism; and increasing a reflectivity of the chamfered surface of the chamfered corner of the prism. A method of determining a prime cut for an optical component is also disclosed. A laser including at least one prime cut optical component is also disclosed.
摘要:
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
摘要:
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
摘要:
A laser system with multiple laser pulses for removing material from a solar cell being fabricated. The laser system includes a single pulse laser source and a multi-pulse generator. The multi-pulse generator receives a single pulse laser beam from the single pulse laser source and converts the single pulse laser beam into a multi-pulse laser beam. A laser scanner scans the multi-pulse laser beam onto the solar cell to remove material from the solar cell.